Where is the Supervirial Gas? The Supply from Hot Inflows

Manami Roy, Kung-Yi Su, Smita Mathur and Jonathan Stern
{"title":"Where is the Supervirial Gas? The Supply from Hot Inflows","authors":"Manami Roy, Kung-Yi Su, Smita Mathur and Jonathan Stern","doi":"10.3847/1538-4357/ade059","DOIUrl":null,"url":null,"abstract":"To understand the presence of the supervirial temperature gas detected in the Milky Way (MW), we present our findings from isolated galaxy simulations of MW-mass systems using GIZMO with the Feedback in Realistic Environments (FIRE-2) stellar feedback model. It unveils the presence of a significant supervirial temperature (T > Tvir) gas component within 20 kpc from the galactic center. We also find that 70%–90% of the total supervirial gas is extraplanar, at 1 < z < 6 kpc and Rcyl < 15 kpc. This supervirial gas has a mass of 1−2 × 107M⊙ with typical gas densities are 10−3.5−10−2.5 cm−3. We find that some of the virial gas (T ∼ 106 K) forms a rotating hot inflow, where gravitational energy is converted to thermal energy mainly via compressive heating. This process causes gas falling close to the rotation axis to reach supervirial temperatures via a combination of compressive heating and shocks just before cooling and joining the disk. Stellar feedback heating accounts for less than 1% of the supervirial gas, indicating its minimal influence despite expectations. Even in scenarios with no stellar feedback effects considered, abundant supervirial gas persists, highlighting the dominance of alternative heating mechanisms. We also show that cosmic rays do not have a significant effect on heating the gas to a supervirial temperature. Our study illuminates the intricate dynamics of hot virial and supervirial gas surrounding MW-mass galaxies, emphasizing the prominent role of infall-driven compressive and shock-heating processes in shaping thermal evolution.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ade059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To understand the presence of the supervirial temperature gas detected in the Milky Way (MW), we present our findings from isolated galaxy simulations of MW-mass systems using GIZMO with the Feedback in Realistic Environments (FIRE-2) stellar feedback model. It unveils the presence of a significant supervirial temperature (T > Tvir) gas component within 20 kpc from the galactic center. We also find that 70%–90% of the total supervirial gas is extraplanar, at 1 < z < 6 kpc and Rcyl < 15 kpc. This supervirial gas has a mass of 1−2 × 107M⊙ with typical gas densities are 10−3.5−10−2.5 cm−3. We find that some of the virial gas (T ∼ 106 K) forms a rotating hot inflow, where gravitational energy is converted to thermal energy mainly via compressive heating. This process causes gas falling close to the rotation axis to reach supervirial temperatures via a combination of compressive heating and shocks just before cooling and joining the disk. Stellar feedback heating accounts for less than 1% of the supervirial gas, indicating its minimal influence despite expectations. Even in scenarios with no stellar feedback effects considered, abundant supervirial gas persists, highlighting the dominance of alternative heating mechanisms. We also show that cosmic rays do not have a significant effect on heating the gas to a supervirial temperature. Our study illuminates the intricate dynamics of hot virial and supervirial gas surrounding MW-mass galaxies, emphasizing the prominent role of infall-driven compressive and shock-heating processes in shaping thermal evolution.
环境气体在哪里?热流入的供给
为了了解在银河系(MW)中检测到的表面温度气体的存在,我们使用GIZMO和现实环境中的反馈(FIRE-2)恒星反馈模型,展示了我们对MW质量系统的孤立星系模拟的发现。它揭示了在距离银河系中心20kpc内存在一个显著的表面温度(t> Tvir)气体成分。在1 < z < 6 kpc和Rcyl < 15 kpc处,70% ~ 90%的地表气体为面外气体。这颗星上气体的质量为1−2 × 107M⊙,典型气体密度为10−3.5−10−2.5 cm−3。我们发现一些气体(T ~ 106 K)形成旋转热流入,其中引力能主要通过压缩加热转化为热能。这个过程使气体在靠近旋转轴的地方通过压缩加热和冲击的组合达到表面温度,然后冷却并加入圆盘。恒星反馈加热只占恒星表面气体的不到1%,这表明尽管预期如此,它的影响微乎其微。即使在没有考虑恒星反馈效应的情况下,丰富的表面气体仍然存在,突出了替代加热机制的主导地位。我们还表明,宇宙射线对将气体加热到生存温度没有显著影响。我们的研究阐明了围绕mw质量星系的热气体和表面气体的复杂动力学,强调了在形成热演化过程中由流入驱动的压缩和冲击加热过程的突出作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信