{"title":"Glucose restriction shapes pre-metastatic innate immune landscapes in the lung through exosomal TRAIL","authors":"Cai-Yuan Wu, Chun-Xiang Huang, Xiang-Ming Lao, Zi-Wen Zhou, Jia-Hong Jian, Zheng-Xi Li, Yong-Yi Wu, Zheng-Yu Liu, Lei Chen, Lianxin Liu, Limin Zheng, Yuan Wei, Dong-Ming Kuang","doi":"10.1016/j.cell.2025.06.027","DOIUrl":null,"url":null,"abstract":"Targeting glucose metabolism has emerged as a promising strategy for inhibiting tumor growth. However, we herein uncover an unexpected paradox: while glucose deprivation through a low-carbohydrate diet or impaired <em>in situ</em> metabolism suppresses primary tumor growth, it simultaneously promotes lung metastasis by depleting natural killer (NK) cells via lung macrophages. Mechanistically, glucose deprivation induces endoplasmic reticulum (ER) stress, activating HMG-CoA reductase degradation protein 1 (HRD1) to catalyze K63-linked ubiquitination of TRAIL, which is then packaged into exosomes via the endosomal sorting complex required for transport (ESCRT) complex. These exosomal TRAIL molecules polarize PVR<sup>+</sup> macrophages, triggering NK cell exhaustion and establishing a pre-metastatic niche. Notably, TIGIT blockade not only prevents metastasis induced by glucose deprivation but also enhances its anti-tumor effects. Clinically, low glucose metabolism correlates with higher 2-year postoperative recurrence across 15 cancer types. Furthermore, plasma exosomal TRAIL outperforms traditional markers, such as α-fetoprotein (AFP) and tumor size, in predicting early postoperative lung metastasis, revealing both the risks and therapeutic potential of targeting glucose metabolism.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"26 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.06.027","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Targeting glucose metabolism has emerged as a promising strategy for inhibiting tumor growth. However, we herein uncover an unexpected paradox: while glucose deprivation through a low-carbohydrate diet or impaired in situ metabolism suppresses primary tumor growth, it simultaneously promotes lung metastasis by depleting natural killer (NK) cells via lung macrophages. Mechanistically, glucose deprivation induces endoplasmic reticulum (ER) stress, activating HMG-CoA reductase degradation protein 1 (HRD1) to catalyze K63-linked ubiquitination of TRAIL, which is then packaged into exosomes via the endosomal sorting complex required for transport (ESCRT) complex. These exosomal TRAIL molecules polarize PVR+ macrophages, triggering NK cell exhaustion and establishing a pre-metastatic niche. Notably, TIGIT blockade not only prevents metastasis induced by glucose deprivation but also enhances its anti-tumor effects. Clinically, low glucose metabolism correlates with higher 2-year postoperative recurrence across 15 cancer types. Furthermore, plasma exosomal TRAIL outperforms traditional markers, such as α-fetoprotein (AFP) and tumor size, in predicting early postoperative lung metastasis, revealing both the risks and therapeutic potential of targeting glucose metabolism.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.