C. M. Raffel, J. Meekes, H.-J. van Manen, A. J. B. ten Kate, A. Chaudhuri, J. van der Schaaf
{"title":"A minimal sampling, in-line spectroscopic calibration method for unstable components during ammoniation of fatty acids","authors":"C. M. Raffel, J. Meekes, H.-J. van Manen, A. J. B. ten Kate, A. Chaudhuri, J. van der Schaaf","doi":"10.1039/d4an01051e","DOIUrl":null,"url":null,"abstract":"The ammoniation of fatty acid produces fatty amide, as well as unstable ammonium salt, whose composition profile can vary with off-line sampling. This makes the analysis and determination of reaction kinetics challenging. In-line FT-IR spectroscopy removes the need for sampling, but requires calibration of the reacting system at reaction conditions, which is complicated by the near-instant formation of ammonium salt. In this work, we demonstrate the development of a calibration method which overcomes the complexities posed by both off-line and in-line analysis. This is achieved by taking only eight off-line samples for determination of the more stable components and formulating mass balances of the reactive system for each in-line acquired FT-IR spectrum. This allows for the determination of the rapidly fluctuating salt content. The essential assumptions underlying the mass balances and the resulting calibration are based on a qualitative examination of the reaction system through principal component analysis. Put together, this enables in-line calibration of the system at reaction conditions, achieving relative errors below 10% using partial least squares regression.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"199 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4an01051e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The ammoniation of fatty acid produces fatty amide, as well as unstable ammonium salt, whose composition profile can vary with off-line sampling. This makes the analysis and determination of reaction kinetics challenging. In-line FT-IR spectroscopy removes the need for sampling, but requires calibration of the reacting system at reaction conditions, which is complicated by the near-instant formation of ammonium salt. In this work, we demonstrate the development of a calibration method which overcomes the complexities posed by both off-line and in-line analysis. This is achieved by taking only eight off-line samples for determination of the more stable components and formulating mass balances of the reactive system for each in-line acquired FT-IR spectrum. This allows for the determination of the rapidly fluctuating salt content. The essential assumptions underlying the mass balances and the resulting calibration are based on a qualitative examination of the reaction system through principal component analysis. Put together, this enables in-line calibration of the system at reaction conditions, achieving relative errors below 10% using partial least squares regression.