{"title":"Biodegradation pathway and products of tire-related phenylenediamines and phenylenediamine quinones in solution – a laboratory study","authors":"Limei Han, Bettina Seiwert, Emily Lichtenwald, Steffen Weyrauch, Daniel Zahn, Thorsten Reemtsma","doi":"10.1016/j.watres.2025.124235","DOIUrl":null,"url":null,"abstract":"<em>Para</em>-phenylenediamines (PPDs) are antioxidants added to tires to protect the rubber. They are released from tire and road wear particles (TRWP) but the extent of their aerobic microbial degradation and the transformation products (TPs) formed are not known. Therefore, aerobic microbial degradation of seven tire-related PPDs, parent compounds as well as known transformation products, was studied for up to 28 days. Half-lives ranged from 0.2 ± 0.1 days (N-(1,3-dimethylbutyl)-N'-phenyl-1,4-benzenediamine, 6-PPD) and 0.6 ± 0.1 days (N-isopropyl-N’-phenyl-1,4-phenylenediamine, IPPD) to 3 ± 0.1 days (N-(1,3-dimethylbutyl)-N'-phenyl-1,4-benzenediamine quinone, 6-PPDQ). A total number of 48 TPs was tentative identified by liquid chromatography-high resolution-mass spectrometry for the seven study compounds. Of these TPs, only four did not decrease in concentration when the parent compounds were degraded completely. Biotransformation in aqueous solution forms several TPs not known for abiotic, photolytic or oxidative transformation. For the PPDs with aliphatic substituents (6-PPD, IPPD) hydrolysis to 4-HDPA was the major initial transformation. Formation of 6-PPDQ from 6-PPD was not detectable. For the fully aromatic DPPD aerobic microbial transformation, likely, proceeded via a quinone diimine intermediate, leading to products different to those of the aliphatic PPDs. From 6-PPDQ, 26 TPs were detected. A suspect screening for the TPs detected from the biodegradation experiments was performed in data of a soil degradation study over 23 months with TRWP and cryo-milled tire tread (CMTT) and in data from the influent and effluent of a municipal wastewater treatment plant during a rain event. In total, 10 TPs were found in those data with variable intensities, most of which originated from 6-PPDQ. While all seven test compounds were (primary) degraded under aerobic conditions, mineralization was not studied. A number of TPs remain as suspects to search for in the environment.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"12 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.124235","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Para-phenylenediamines (PPDs) are antioxidants added to tires to protect the rubber. They are released from tire and road wear particles (TRWP) but the extent of their aerobic microbial degradation and the transformation products (TPs) formed are not known. Therefore, aerobic microbial degradation of seven tire-related PPDs, parent compounds as well as known transformation products, was studied for up to 28 days. Half-lives ranged from 0.2 ± 0.1 days (N-(1,3-dimethylbutyl)-N'-phenyl-1,4-benzenediamine, 6-PPD) and 0.6 ± 0.1 days (N-isopropyl-N’-phenyl-1,4-phenylenediamine, IPPD) to 3 ± 0.1 days (N-(1,3-dimethylbutyl)-N'-phenyl-1,4-benzenediamine quinone, 6-PPDQ). A total number of 48 TPs was tentative identified by liquid chromatography-high resolution-mass spectrometry for the seven study compounds. Of these TPs, only four did not decrease in concentration when the parent compounds were degraded completely. Biotransformation in aqueous solution forms several TPs not known for abiotic, photolytic or oxidative transformation. For the PPDs with aliphatic substituents (6-PPD, IPPD) hydrolysis to 4-HDPA was the major initial transformation. Formation of 6-PPDQ from 6-PPD was not detectable. For the fully aromatic DPPD aerobic microbial transformation, likely, proceeded via a quinone diimine intermediate, leading to products different to those of the aliphatic PPDs. From 6-PPDQ, 26 TPs were detected. A suspect screening for the TPs detected from the biodegradation experiments was performed in data of a soil degradation study over 23 months with TRWP and cryo-milled tire tread (CMTT) and in data from the influent and effluent of a municipal wastewater treatment plant during a rain event. In total, 10 TPs were found in those data with variable intensities, most of which originated from 6-PPDQ. While all seven test compounds were (primary) degraded under aerobic conditions, mineralization was not studied. A number of TPs remain as suspects to search for in the environment.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.