Spinodal decomposition enables coherent plasmonic metal/semiconductor heterostructure for full spectrum photocatalysis

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lisha Lu, Muhua Sun, Aomiao Zhi, Hao Ling, Yingying Lan, Hongbo Han, Jianlin Wang, Xiaowei Zhang, Yu Zhao, Meiyun Li, Lejuan Cai, Xiaomin Li, Xuedong Bai, Wenlong Wang
{"title":"Spinodal decomposition enables coherent plasmonic metal/semiconductor heterostructure for full spectrum photocatalysis","authors":"Lisha Lu, Muhua Sun, Aomiao Zhi, Hao Ling, Yingying Lan, Hongbo Han, Jianlin Wang, Xiaowei Zhang, Yu Zhao, Meiyun Li, Lejuan Cai, Xiaomin Li, Xuedong Bai, Wenlong Wang","doi":"10.1038/s41467-025-61872-1","DOIUrl":null,"url":null,"abstract":"<p>Nanoscale metal/semiconductor heterostructures are critical components for a variety of light energy conversion applications. Herein, with plasmonic hafnium nitride (HfN) as a model system, we show that spinodal decomposition can be exploited as a unique means to produce the lattice-coherent metal/semiconductor heterostructure between HfN and its native oxynitride semiconductor—Hf<sub>2</sub>ON<sub>2</sub>. Atomic-resolution electron microscopy imaging provides direct visualization of the complete lattice coherency over the interface region with precisely controlled spatial modulation. The light-harvesting HfN component exhibits a broadband plasmonic absorption covering visible and near-infrared regions, and the plasmonically excited hot electrons can be efficiently injected into neighboring Hf<sub>2</sub>ON<sub>2</sub> across interface. When combined with a small amount of Pt co-catalyst, the coherent HfN/Hf<sub>2</sub>ON<sub>2</sub> heterostructure achieves high-efficiency photocatalytic H<sub>2</sub> production from methanol decomposition under visible and NIR light illumination, with apparent quantum yields of 27% at 600 nm and 13.9% at 850 nm, respectively. This performance contributes to the efficient utilization of a broad solar spectrum in photocatalysis and solar energy conversion applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"73 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61872-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoscale metal/semiconductor heterostructures are critical components for a variety of light energy conversion applications. Herein, with plasmonic hafnium nitride (HfN) as a model system, we show that spinodal decomposition can be exploited as a unique means to produce the lattice-coherent metal/semiconductor heterostructure between HfN and its native oxynitride semiconductor—Hf2ON2. Atomic-resolution electron microscopy imaging provides direct visualization of the complete lattice coherency over the interface region with precisely controlled spatial modulation. The light-harvesting HfN component exhibits a broadband plasmonic absorption covering visible and near-infrared regions, and the plasmonically excited hot electrons can be efficiently injected into neighboring Hf2ON2 across interface. When combined with a small amount of Pt co-catalyst, the coherent HfN/Hf2ON2 heterostructure achieves high-efficiency photocatalytic H2 production from methanol decomposition under visible and NIR light illumination, with apparent quantum yields of 27% at 600 nm and 13.9% at 850 nm, respectively. This performance contributes to the efficient utilization of a broad solar spectrum in photocatalysis and solar energy conversion applications.

Abstract Image

Spinodal分解使相干等离子体金属/半导体异质结构用于全光谱光催化
纳米级金属/半导体异质结构是各种光能转换应用的关键部件。本文以等离子体氮化铪(HfN)为模型体系,研究表明,独立分解可以作为一种独特的手段,在HfN与其天然氮化氧半导体- hf2on2之间产生晶格相干金属/半导体异质结构。原子分辨率电子显微镜成像提供了直接可视化的完整晶格相干在界面区域与精确控制的空间调制。光捕获HfN组件具有覆盖可见光和近红外区域的宽带等离子体吸收,并且等离子体激发的热电子可以有效地跨界面注入相邻的Hf2ON2。当与少量Pt共催化剂结合时,相干HfN/Hf2ON2异质结构在可见光和近红外光照射下实现了甲醇分解高效光催化制氢,在600 nm和850 nm处的表观量子产率分别为27%和13.9%。这种性能有助于在光催化和太阳能转换应用中有效利用广泛的太阳光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信