An explicit integration approach for predicting the microstructures of multicomponent alloys

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Takumi Morino, Machiko Ode, Shoichi Hirosawa
{"title":"An explicit integration approach for predicting the microstructures of multicomponent alloys","authors":"Takumi Morino, Machiko Ode, Shoichi Hirosawa","doi":"10.1038/s41467-025-61246-7","DOIUrl":null,"url":null,"abstract":"<p>Predicting the complex microstructures of practical materials has been a longstanding goal since Gibbs’s pioneering work on predictions for equilibrium of heterogeneous systems. The most promising approach for achieving this goal is integrating Calculation of Phase Diagrams (CALPHAD) with phase-field models. This CALPHAD-coupled phase-field model requires two Gibbs free energy minimisation conditions: equal diffusion potential and internal equilibrium, both grounded in the second law of thermodynamics. However, as implicit functions, these minimisation conditions suffer from the curse of dimensionality when applied to multicomponent systems, which imposes significant constraints on simulation capabilities. Here we propose an approach that incorporates the equal diffusion potential and internal equilibrium conditions into a single explicit function in phase-field equations. In simulations across various practical materials, our model achieved equal diffusion and internal equilibrium conditions. Furthermore, it overcame dimensionality limitations, enabling computations for systems with up to 20 components. Thus, the proposed approach proves highly versatile and efficient, supporting a wide range of practical applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"7 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61246-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the complex microstructures of practical materials has been a longstanding goal since Gibbs’s pioneering work on predictions for equilibrium of heterogeneous systems. The most promising approach for achieving this goal is integrating Calculation of Phase Diagrams (CALPHAD) with phase-field models. This CALPHAD-coupled phase-field model requires two Gibbs free energy minimisation conditions: equal diffusion potential and internal equilibrium, both grounded in the second law of thermodynamics. However, as implicit functions, these minimisation conditions suffer from the curse of dimensionality when applied to multicomponent systems, which imposes significant constraints on simulation capabilities. Here we propose an approach that incorporates the equal diffusion potential and internal equilibrium conditions into a single explicit function in phase-field equations. In simulations across various practical materials, our model achieved equal diffusion and internal equilibrium conditions. Furthermore, it overcame dimensionality limitations, enabling computations for systems with up to 20 components. Thus, the proposed approach proves highly versatile and efficient, supporting a wide range of practical applications.

Abstract Image

预测多组分合金组织的显式积分方法
自从吉布斯在预测异质系统平衡方面的开创性工作以来,预测实际材料的复杂微观结构一直是一个长期的目标。实现这一目标最有希望的方法是将相图计算(CALPHAD)与相场模型相结合。这个calphad耦合相场模型需要两个吉布斯自由能最小化条件:扩散势相等和内部平衡,两者都基于热力学第二定律。然而,作为隐式函数,当应用于多组件系统时,这些最小化条件遭受维度诅咒,这对模拟能力施加了重大限制。本文提出了一种将扩散势和内部平衡条件等化为相场方程中单个显式函数的方法。在各种实际材料的模拟中,我们的模型达到了相同的扩散和内部平衡条件。此外,它克服了维度限制,能够计算多达20个组件的系统。因此,所提出的方法被证明是高度通用和高效的,支持广泛的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信