A versatile nanoplatform for enhanced sonodynamic therapy via hypoxia alleviation, glutathione depletion, and calcium overload.

Min Zhang, Xuehui Wang, Chaocai Zhang, Dandan Sun, Zhuole Wu, Dayan Yang, Pingyang Zhang, Xiangxiang Jing
{"title":"A versatile nanoplatform for enhanced sonodynamic therapy <i>via</i> hypoxia alleviation, glutathione depletion, and calcium overload.","authors":"Min Zhang, Xuehui Wang, Chaocai Zhang, Dandan Sun, Zhuole Wu, Dayan Yang, Pingyang Zhang, Xiangxiang Jing","doi":"10.1039/d5tb00318k","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound (US) offers exceptional tissue penetration, making it a promising modality for the treatment of deep-seated cancers. Sonodynamic therapy (SDT) leverages US to activate low-toxicity sonosensitizers, generating cytotoxic reactive oxygen species (ROS) that induce cancer cell death. However, its clinical effectiveness is hindered by challenges such as hypoxia and overexpression of glutathione (GSH) in the tumor microenvironment (TME). In this study, we designed and synthesized a sodium-hyaluronate-modified TCCP-BSO@CaO<sub>2</sub>@SH nanoplatform (TBC@SH NPs) to enhance SDT efficacy in hepatocellular carcinoma (HCC). The TBC@SH NPs were prepared through a straightforward one-pot method, involving the self-assembly of CaO<sub>2</sub> nanoparticles with tetrakis (4-carboxyphenyl) porphyrin (TCPP) and L-buthionine sulfoximine (BSO), followed by surface modification with sodium hyaluronate (SH) for targeted delivery to CD44 receptors on HCC cells. In the mildly acidic TME, TBC@SH NPs facilitate oxygen release, induce calcium ion overload, inhibit GSH synthesis, and generate substantial reactive oxygen species (ROS) under ultrasound irradiation. These synergistic effects collectively amplify oxidative stress, significantly enhancing SDT therapeutic efficacy in HCC treatment. Encouraging results were observed in both <i>in vitro</i> HCC cell models and <i>in vivo</i> animal tumor models. This study highlights the potential of ultrasound-mediated SDT therapy for HCC and provides valuable insights into the development of integrated nanoplatforms for enhanced HCC treatment.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00318k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound (US) offers exceptional tissue penetration, making it a promising modality for the treatment of deep-seated cancers. Sonodynamic therapy (SDT) leverages US to activate low-toxicity sonosensitizers, generating cytotoxic reactive oxygen species (ROS) that induce cancer cell death. However, its clinical effectiveness is hindered by challenges such as hypoxia and overexpression of glutathione (GSH) in the tumor microenvironment (TME). In this study, we designed and synthesized a sodium-hyaluronate-modified TCCP-BSO@CaO2@SH nanoplatform (TBC@SH NPs) to enhance SDT efficacy in hepatocellular carcinoma (HCC). The TBC@SH NPs were prepared through a straightforward one-pot method, involving the self-assembly of CaO2 nanoparticles with tetrakis (4-carboxyphenyl) porphyrin (TCPP) and L-buthionine sulfoximine (BSO), followed by surface modification with sodium hyaluronate (SH) for targeted delivery to CD44 receptors on HCC cells. In the mildly acidic TME, TBC@SH NPs facilitate oxygen release, induce calcium ion overload, inhibit GSH synthesis, and generate substantial reactive oxygen species (ROS) under ultrasound irradiation. These synergistic effects collectively amplify oxidative stress, significantly enhancing SDT therapeutic efficacy in HCC treatment. Encouraging results were observed in both in vitro HCC cell models and in vivo animal tumor models. This study highlights the potential of ultrasound-mediated SDT therapy for HCC and provides valuable insights into the development of integrated nanoplatforms for enhanced HCC treatment.

通过缺氧缓解、谷胱甘肽耗竭和钙超载来增强声动力治疗的多功能纳米平台。
超声(US)提供了特殊的组织穿透,使其成为治疗深层癌症的一种有前途的方式。声动力疗法(SDT)利用US激活低毒性声敏剂,产生细胞毒性活性氧(ROS),诱导癌细胞死亡。然而,其临床效果受到肿瘤微环境(TME)中缺氧和谷胱甘肽(GSH)过表达等挑战的阻碍。在这项研究中,我们设计并合成了一种透明质酸钠修饰的TCCP-BSO@CaO2@SH纳米平台(TBC@SH NPs)来增强SDT治疗肝细胞癌(HCC)的疗效。TBC@SH NPs是通过简单的一锅法制备的,包括将CaO2纳米颗粒与四(4-羧基苯基)卟啉(TCPP)和l -丁硫氨酸亚砜(BSO)自组装,然后用透明质酸钠(SH)进行表面修饰,以靶向递送到HCC细胞的CD44受体。在轻度酸性TME中,TBC@SH NPs在超声照射下促进氧释放,诱导钙离子过载,抑制谷胱甘肽合成,产生大量活性氧(ROS)。这些协同作用共同放大氧化应激,显著提高SDT治疗HCC的疗效。在体外肝癌细胞模型和体内动物肿瘤模型中均观察到令人鼓舞的结果。这项研究强调了超声介导的SDT治疗HCC的潜力,并为开发增强HCC治疗的集成纳米平台提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信