Multi-source positioning information fusion method based on improved robust Kalman filter.

Weiwei Lin, Jiajun Wang, Xiaoling Wang, Jun Zhang, Haojun Gao
{"title":"Multi-source positioning information fusion method based on improved robust Kalman filter.","authors":"Weiwei Lin, Jiajun Wang, Xiaoling Wang, Jun Zhang, Haojun Gao","doi":"10.1016/j.isatra.2025.07.006","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancing positioning accuracy in rolling machinery is vital for quality and construction efficiency. To mitigate random noise interference in deep and narrow valleys, a multi-source positioning information fusion method utilizing an improved robust Kalman filter is proposed. This method adaptively selects optimal observations from GNSS, Robotic Total Station (RTS) and Ultra Wide Band (UWB) data, compensates for location deviation and data loss from noise interference, thus improving data robustness. The Kalman filter is improved by incorporating a thick tail Laplace distribution to dynamically adjust noise covariance, overcoming challenges with large random errors in data fusion and improving the robustness. Engineering tests show this method can adapt to complex and harsh environments in deep and narrow river valleys, with a compensation rate of over 97.33 % for data offset and loss issues, reducing localization offset rates by 7.72 % and loss rates by 1.64 % compared to single-method approaches, effectively improving the robustness, accuracy, and completeness of real-time monitoring results.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.07.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing positioning accuracy in rolling machinery is vital for quality and construction efficiency. To mitigate random noise interference in deep and narrow valleys, a multi-source positioning information fusion method utilizing an improved robust Kalman filter is proposed. This method adaptively selects optimal observations from GNSS, Robotic Total Station (RTS) and Ultra Wide Band (UWB) data, compensates for location deviation and data loss from noise interference, thus improving data robustness. The Kalman filter is improved by incorporating a thick tail Laplace distribution to dynamically adjust noise covariance, overcoming challenges with large random errors in data fusion and improving the robustness. Engineering tests show this method can adapt to complex and harsh environments in deep and narrow river valleys, with a compensation rate of over 97.33 % for data offset and loss issues, reducing localization offset rates by 7.72 % and loss rates by 1.64 % compared to single-method approaches, effectively improving the robustness, accuracy, and completeness of real-time monitoring results.

基于改进鲁棒卡尔曼滤波的多源定位信息融合方法。
提高轧制机械的定位精度对质量和施工效率至关重要。为了消除深窄谷中的随机噪声干扰,提出了一种基于改进鲁棒卡尔曼滤波的多源定位信息融合方法。该方法自适应地从GNSS、机器人全站站(RTS)和超宽带(UWB)数据中选择最优观测值,补偿位置偏差和噪声干扰造成的数据丢失,提高数据的鲁棒性。采用厚尾拉普拉斯分布对卡尔曼滤波进行改进,动态调整噪声协方差,克服了数据融合随机误差大的难题,提高了鲁棒性。工程试验表明,该方法能够适应深窄河谷复杂恶劣的环境,对数据偏移和丢失问题的补偿率超过97.33 %,与单一方法相比,定位偏移率降低7.72 %,损失率降低1.64 %,有效提高了实时监测结果的鲁棒性、准确性和完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信