A new hybrid neurodynamics-based model-less solution for redundant robot fault-tolerant motion planning and control.

Xin Wang, Ning Tan, Zhaohui Zhong, Cong Hu, Kai Huang, Xiaoyi Gu
{"title":"A new hybrid neurodynamics-based model-less solution for redundant robot fault-tolerant motion planning and control.","authors":"Xin Wang, Ning Tan, Zhaohui Zhong, Cong Hu, Kai Huang, Xiaoyi Gu","doi":"10.1016/j.isatra.2025.07.004","DOIUrl":null,"url":null,"abstract":"<p><p>For tasks utilizing redundant manipulators, the motion of multiple joints is involved in performing tracking control. In some cases, the failure of one or more joints may lead to task failure or even cause damage, highlighting the necessity of fault tolerance as a crucial capability for robotic control systems. To achieve the fault-tolerant control capability of the redundant manipulator, a quadratic programming problem is formulated to minimize the joint velocity based on the task-priority strategy. Based on this formulation, a constraint transformation method is employed to handle the joint velocity constraints, and finally, this quadratic programming problem is solved using zeroing neurodynamics with finite-time convergence. Unlike most previous fault-tolerant control algorithms, the proposed method estimates the Jacobian matrix in a data-driven manner based on gradient neurodynamics, without requiring the kinematic model of the redundant manipulator. The effectiveness of the proposed method is evaluated through simulations and experiments using manipulators with different degrees of freedom.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.07.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For tasks utilizing redundant manipulators, the motion of multiple joints is involved in performing tracking control. In some cases, the failure of one or more joints may lead to task failure or even cause damage, highlighting the necessity of fault tolerance as a crucial capability for robotic control systems. To achieve the fault-tolerant control capability of the redundant manipulator, a quadratic programming problem is formulated to minimize the joint velocity based on the task-priority strategy. Based on this formulation, a constraint transformation method is employed to handle the joint velocity constraints, and finally, this quadratic programming problem is solved using zeroing neurodynamics with finite-time convergence. Unlike most previous fault-tolerant control algorithms, the proposed method estimates the Jacobian matrix in a data-driven manner based on gradient neurodynamics, without requiring the kinematic model of the redundant manipulator. The effectiveness of the proposed method is evaluated through simulations and experiments using manipulators with different degrees of freedom.

基于混合神经动力学的冗余机器人容错运动规划与控制新方法。
对于使用冗余机械手的任务,跟踪控制涉及多个关节的运动。在某些情况下,一个或多个关节的故障可能导致任务失败甚至造成损坏,这突出了容错作为机器人控制系统的关键能力的必要性。为实现冗余度机械手的容错控制能力,基于任务优先级策略,构造了关节速度最小化的二次规划问题。在此基础上,采用约束变换方法处理关节速度约束,最后利用有限时间收敛的归零神经动力学求解该二次规划问题。与以往大多数容错控制算法不同,该方法采用基于梯度神经动力学的数据驱动方法估计雅可比矩阵,而不需要冗余机械手的运动学模型。通过不同自由度机械臂的仿真和实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信