Humanized murine models of platelet function.

IF 2.9 3区 医学 Q2 HEMATOLOGY
Current Opinion in Hematology Pub Date : 2025-09-01 Epub Date: 2025-07-11 DOI:10.1097/MOH.0000000000000879
Javier Menéndez-Pérez, Abigail Ajanel, Robert A Campbell
{"title":"Humanized murine models of platelet function.","authors":"Javier Menéndez-Pérez, Abigail Ajanel, Robert A Campbell","doi":"10.1097/MOH.0000000000000879","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>In this review, we will describe murine models developed to examine human platelet function.</p><p><strong>Recent findings: </strong>Platelets are critical cells necessary to regulate hemostasis after vessel injury. However, excessive platelet activation can lead to thrombotic complications. Preclinical/translational models are critical in developing therapeutics against platelet activation and to understand mechanistically how platelets function. Researchers have relied on murine models to study platelet function in vivo due to ease of establishing genetic knockouts as well as their lower cost and high throughput nature compared to larger animal models. However, while murine platelets are similar to human based on transcriptomic and proteomic analysis, there are significant differences between the two species, which limits their translation to the human system. To overcome these hurdles, investigators have targeted human platelet genes into the murine genome to express human receptors in mouse platelets. In addition, transfusion models of human platelets into mice have provided valuable insight into human platelet function.</p><p><strong>Summary: </strong>Murine models are a value tool to examine platelet function in hemostasis and thrombosis. Continued focus on developing mouse models where platelets resemble those circulating in humans will offer valuable insight into important pathways, which may be targeted in the future.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"245-252"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12262182/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOH.0000000000000879","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of review: In this review, we will describe murine models developed to examine human platelet function.

Recent findings: Platelets are critical cells necessary to regulate hemostasis after vessel injury. However, excessive platelet activation can lead to thrombotic complications. Preclinical/translational models are critical in developing therapeutics against platelet activation and to understand mechanistically how platelets function. Researchers have relied on murine models to study platelet function in vivo due to ease of establishing genetic knockouts as well as their lower cost and high throughput nature compared to larger animal models. However, while murine platelets are similar to human based on transcriptomic and proteomic analysis, there are significant differences between the two species, which limits their translation to the human system. To overcome these hurdles, investigators have targeted human platelet genes into the murine genome to express human receptors in mouse platelets. In addition, transfusion models of human platelets into mice have provided valuable insight into human platelet function.

Summary: Murine models are a value tool to examine platelet function in hemostasis and thrombosis. Continued focus on developing mouse models where platelets resemble those circulating in humans will offer valuable insight into important pathways, which may be targeted in the future.

人源化小鼠血小板功能模型。
综述目的:在这篇综述中,我们将描述用于检测人类血小板功能的小鼠模型。最近研究发现:血小板是血管损伤后调节止血所必需的关键细胞。然而,过度的血小板活化可导致血栓性并发症。临床前/转化模型对于开发抗血小板活化的治疗方法和了解血小板功能的机制至关重要。研究人员一直依靠小鼠模型来研究体内血小板功能,因为与大型动物模型相比,小鼠模型易于建立基因敲除,而且成本更低,通量更高。然而,尽管基于转录组学和蛋白质组学分析,小鼠血小板与人类相似,但两种物种之间存在显着差异,这限制了它们在人类系统中的翻译。为了克服这些障碍,研究人员将人类血小板基因定位到小鼠基因组中,在小鼠血小板中表达人类受体。此外,人类血小板输注小鼠模型为人类血小板功能提供了有价值的见解。总结:小鼠模型是检测血小板在止血和血栓形成过程中的功能的一种有价值的工具。继续专注于开发血小板类似于人类循环的小鼠模型,将为重要途径提供有价值的见解,这可能是未来的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.10%
发文量
78
审稿时长
6-12 weeks
期刊介绍: ​​​​​​​​Current Opinion in Hematology is an easy-to-digest bimonthly journal covering the most interesting and important advances in the field of hematology. Its hand-picked selection of editors ensure the highest quality selection of unbiased review articles on themes from nine key subject areas, including myeloid biology, Vascular biology, hematopoiesis and erythroid system and its diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信