Mallikarjunagouda B Patil, Shridhar N Mathad, Arun Y Patil, Abdulaziz Abdulah Al-Kheraif, Sachin Naik, Sajith Vellapally
{"title":"Enhanced and proficient chitosan membranes embedded with polyaniline-TiO<sub>2</sub> core-shell nanocomposites for fuel-cell hydrogen storage.","authors":"Mallikarjunagouda B Patil, Shridhar N Mathad, Arun Y Patil, Abdulaziz Abdulah Al-Kheraif, Sachin Naik, Sajith Vellapally","doi":"10.55730/1300-0527.3730","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the preparation and properties of aniline polymerized in situ onto a nanosized TiO<sub>2</sub> surface to form core-shell nanoparticles at ambient temperatures. The in situ polymerization of aniline to polyaniline (PANI), in conjunction with the utilization of an anionic surfactant, was employed in this investigation. The prepared PANI-TiO<sub>2</sub> core-shell nanoparticles were integrated with chitosan at a gravimetric ratio and cast as core-shell nanocomposite membranes. The nanocomposites were subjected to structural analysis using Fourier transform infrared spectroscopy and X-ray diffraction patterns. The surface morphologies of the PANI and its nanocomposites were analyzed using scanning electron microscopy. Direct current conductivity studies revealed three discrete tiers of conductivity intrinsic to a semiconductor material. The nanocomposite, comprising a chitosan membrane embedded with 4 wt.% PANI-TiO<sub>2</sub>, demonstrated peak direct current conductivity of 5.7 S/cm. The properties of the core-shell nanocomposite membranes could be elucidated using cyclic voltammetry, a technique that allowed for the observation of redox peaks occurring at 0.94 V and 0.25 V. The presence of both peaks was due to the redox transition of the prepared nanocomposite membranes from a semiconducting to a conductive state. At room temperature, the hydrogen absorption capacity was approximately 4.5 wt.%, but when the temperature was raised to 65 °C, it doubled to about 7.5 wt.%. In comparison to other nanocomposites, the 4 wt.% PANI-TiO<sub>2</sub> core-shell embedded chitosan membrane exhibited significantly higher absorption capacity of 10.5 wt.%.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"49 3","pages":"293-309"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12253973/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3730","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the preparation and properties of aniline polymerized in situ onto a nanosized TiO2 surface to form core-shell nanoparticles at ambient temperatures. The in situ polymerization of aniline to polyaniline (PANI), in conjunction with the utilization of an anionic surfactant, was employed in this investigation. The prepared PANI-TiO2 core-shell nanoparticles were integrated with chitosan at a gravimetric ratio and cast as core-shell nanocomposite membranes. The nanocomposites were subjected to structural analysis using Fourier transform infrared spectroscopy and X-ray diffraction patterns. The surface morphologies of the PANI and its nanocomposites were analyzed using scanning electron microscopy. Direct current conductivity studies revealed three discrete tiers of conductivity intrinsic to a semiconductor material. The nanocomposite, comprising a chitosan membrane embedded with 4 wt.% PANI-TiO2, demonstrated peak direct current conductivity of 5.7 S/cm. The properties of the core-shell nanocomposite membranes could be elucidated using cyclic voltammetry, a technique that allowed for the observation of redox peaks occurring at 0.94 V and 0.25 V. The presence of both peaks was due to the redox transition of the prepared nanocomposite membranes from a semiconducting to a conductive state. At room temperature, the hydrogen absorption capacity was approximately 4.5 wt.%, but when the temperature was raised to 65 °C, it doubled to about 7.5 wt.%. In comparison to other nanocomposites, the 4 wt.% PANI-TiO2 core-shell embedded chitosan membrane exhibited significantly higher absorption capacity of 10.5 wt.%.
期刊介绍:
The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK).
The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings.
The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities.
The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields.
All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.