Orai1 is Required for Osteogenic Differentiation on Nanoparticulate Mineralized Collagen Glycosaminoglycan Materials.

IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Meiwand Bedar, Wei Chen, Xiaoyan Ren, Shahrzad Moghadam, Youngnam Kang, Kaavian Shariati, Kelly X Huang, Grace Rubino, Brendan A C Harley, Justine C Lee
{"title":"Orai1 is Required for Osteogenic Differentiation on Nanoparticulate Mineralized Collagen Glycosaminoglycan Materials.","authors":"Meiwand Bedar, Wei Chen, Xiaoyan Ren, Shahrzad Moghadam, Youngnam Kang, Kaavian Shariati, Kelly X Huang, Grace Rubino, Brendan A C Harley, Justine C Lee","doi":"10.1002/mabi.202400636","DOIUrl":null,"url":null,"abstract":"<p><p>The role of the extracellular matrix (ECM) in guiding cell fate has spurred the development of synthetic, ECM-inspired regenerative biomaterials. We previously described a porous, open-cell foam composed of nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG), capable of inducing in vitro osteogenesis of primary human mesenchymal stem cells (hMSCs) and in vivo skull regeneration without adding growth factors or expanded progenitor cells. This study investigated the role of store-operated calcium entry (SOCE) in MC-GAG activity by evaluating the impact of Orai1, the pore-forming subunit of the calcium release-activated channel. Compared to nonmineralized collagen glycosaminoglycan (Col-GAG), hMSCs cultured on MC-GAG exhibited increased Orai1 expression. Chemical inhibition of SOCE using MRS1845 reduced the expression of both gene and protein of osteogenic markers, as well as mineralization on MC-GAG, while MRS1845 exerted no effects on Col-GAG materials. Orai1 knockdown similarly inhibited matrix mineralization and expression of the late osteogenic marker, bone sialoprotein-2 (BSP2), on MC-GAG, whereas no effects were notable on Col-GAG. Orai1 knockdown reduced ERK1/2 phosphorylation, suggesting that the osteogenic effects of Orai1 functioned downstream of ERK1/2 pathways. These findings suggest Orai1 is necessary for osteoprogenitor maturation and matrix mineralization in MC-GAG-mediated osteogenic differentiation.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e00636"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371709/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400636","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The role of the extracellular matrix (ECM) in guiding cell fate has spurred the development of synthetic, ECM-inspired regenerative biomaterials. We previously described a porous, open-cell foam composed of nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG), capable of inducing in vitro osteogenesis of primary human mesenchymal stem cells (hMSCs) and in vivo skull regeneration without adding growth factors or expanded progenitor cells. This study investigated the role of store-operated calcium entry (SOCE) in MC-GAG activity by evaluating the impact of Orai1, the pore-forming subunit of the calcium release-activated channel. Compared to nonmineralized collagen glycosaminoglycan (Col-GAG), hMSCs cultured on MC-GAG exhibited increased Orai1 expression. Chemical inhibition of SOCE using MRS1845 reduced the expression of both gene and protein of osteogenic markers, as well as mineralization on MC-GAG, while MRS1845 exerted no effects on Col-GAG materials. Orai1 knockdown similarly inhibited matrix mineralization and expression of the late osteogenic marker, bone sialoprotein-2 (BSP2), on MC-GAG, whereas no effects were notable on Col-GAG. Orai1 knockdown reduced ERK1/2 phosphorylation, suggesting that the osteogenic effects of Orai1 functioned downstream of ERK1/2 pathways. These findings suggest Orai1 is necessary for osteoprogenitor maturation and matrix mineralization in MC-GAG-mediated osteogenic differentiation.

Orai1是纳米颗粒矿化胶原糖胺聚糖材料成骨分化所必需的。
细胞外基质(ECM)在指导细胞命运中的作用刺激了合成的、受ECM启发的再生生物材料的发展。我们之前描述了一种由纳米颗粒矿化胶原糖胺聚糖(MC-GAG)组成的多孔开细胞泡沫,能够在体外诱导原代人间充质干细胞(hMSCs)成骨,并在体内诱导颅骨再生,而无需添加生长因子或增殖祖细胞。本研究通过评估钙释放激活通道的成孔亚基Orai1对MC-GAG活性的影响,探讨了储存操作钙进入(SOCE)在MC-GAG活性中的作用。与未矿化的胶原糖胺聚糖(Col-GAG)相比,MC-GAG培养的hMSCs表现出更高的Orai1表达。MRS1845对SOCE的化学抑制降低了成骨标志物基因和蛋白的表达以及MC-GAG的矿化,而MRS1845对Col-GAG材料没有影响。Orai1敲低同样抑制基质矿化和晚期成骨标志物骨涎蛋白-2 (BSP2)对MC-GAG的表达,而对Col-GAG无显著影响。Orai1的下调降低了ERK1/2的磷酸化,表明Orai1的成骨作用在ERK1/2通路的下游发挥作用。这些研究结果表明,在mc - gag介导的成骨分化中,Orai1是成骨祖细胞成熟和基质矿化所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信