Su-Min Park, Ji-Hwan Ryoo, Hyuk Cheol Kwon, Sung Gu Han
{"title":"Scaffold Biomaterials in the Development of Cultured Meat: A Review.","authors":"Su-Min Park, Ji-Hwan Ryoo, Hyuk Cheol Kwon, Sung Gu Han","doi":"10.5851/kosfa.2025.e13","DOIUrl":null,"url":null,"abstract":"<p><p>Cultured meat offers a sustainable and ethical solution to the environmental and food security challenges associated with conventional meat production. In cultured meat production, scaffolds play an important role as structural and biochemical supports for cell adhesion, proliferation, and differentiation. The selection of biomaterials directly influences cellular processes and consequently shape the texture, flavor, and overall quality of the cultivated meat. This review provides a comprehensive overview of biomaterials employed in cultured meat scaffolds, encompassing sources such as animals, plants, algae, and microorganisms. The strengths and limitations of each biomaterial type are critically analyzed to guide scaffold fabrication strategies. Furthermore, potential applications are explored to address the constraints of individual biomaterials. Animal-derived biomaterials improve cell adhesion and biocompatibility by imitating extracellular substrates but are limited by high cost and low mechanical strength. Although plant-derived biomaterials are cost-effective and biodegradable, their mechanical strength and biocompatibility should be enhanced through chemical modification or combination with other biomaterials. Algae-derived biomaterials provide gelling properties but lack cell-binding sites and mechanical stability. Microbial-derived biomaterials provide high mechanical strength, while the lack of nutritional value and cell-binding sites limits their application in scaffold fabrication. Each biomaterial possesses unique properties, presenting both advantages and disadvantages. By leveraging their strengths, individual biomaterials can serve as effective sources for scaffold construction. An understanding their strengths, limitations, and suitability is crucial for designing and fabricating optimal scaffolds, ultimately enabling the successful production of cultured meat.</p>","PeriodicalId":12459,"journal":{"name":"Food Science of Animal Resources","volume":"45 3","pages":"688-710"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science of Animal Resources","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5851/kosfa.2025.e13","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cultured meat offers a sustainable and ethical solution to the environmental and food security challenges associated with conventional meat production. In cultured meat production, scaffolds play an important role as structural and biochemical supports for cell adhesion, proliferation, and differentiation. The selection of biomaterials directly influences cellular processes and consequently shape the texture, flavor, and overall quality of the cultivated meat. This review provides a comprehensive overview of biomaterials employed in cultured meat scaffolds, encompassing sources such as animals, plants, algae, and microorganisms. The strengths and limitations of each biomaterial type are critically analyzed to guide scaffold fabrication strategies. Furthermore, potential applications are explored to address the constraints of individual biomaterials. Animal-derived biomaterials improve cell adhesion and biocompatibility by imitating extracellular substrates but are limited by high cost and low mechanical strength. Although plant-derived biomaterials are cost-effective and biodegradable, their mechanical strength and biocompatibility should be enhanced through chemical modification or combination with other biomaterials. Algae-derived biomaterials provide gelling properties but lack cell-binding sites and mechanical stability. Microbial-derived biomaterials provide high mechanical strength, while the lack of nutritional value and cell-binding sites limits their application in scaffold fabrication. Each biomaterial possesses unique properties, presenting both advantages and disadvantages. By leveraging their strengths, individual biomaterials can serve as effective sources for scaffold construction. An understanding their strengths, limitations, and suitability is crucial for designing and fabricating optimal scaffolds, ultimately enabling the successful production of cultured meat.
期刊介绍:
Food Science of Animal Resources (Food Sci. Anim. Resour.) is an international, peer-reviewed journal publishing original research and review articles on scientific and technological aspects of chemistry, biotechnology, processing, engineering, and microbiology of meat, egg, dairy, and edible insect/worm products.