Laminae as Potential Biosignatures.

IF 2.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Astrobiology Pub Date : 2025-07-14 DOI:10.1089/ast.2025.0012
Jon Lima-Zaloumis, Sherry L Cady, Jen G Blank, Svetlana Shkolyar, Victor Akudoro, Stanley M Awramik, Barbara Cavalazzi, Keyron Hickman-Lewis, Martin Homann, Nora Noffke, Scott M Perl, Sally L Potter-McIntyre, Frances Westall
{"title":"Laminae as Potential Biosignatures.","authors":"Jon Lima-Zaloumis, Sherry L Cady, Jen G Blank, Svetlana Shkolyar, Victor Akudoro, Stanley M Awramik, Barbara Cavalazzi, Keyron Hickman-Lewis, Martin Homann, Nora Noffke, Scott M Perl, Sally L Potter-McIntyre, Frances Westall","doi":"10.1089/ast.2025.0012","DOIUrl":null,"url":null,"abstract":"<p><p>Laminae are millimeter-scale features in rocks created by physiochemical processes that can be influenced by the presence and activities of communities of organisms that occur as biofilms and microbial mats. The structure and composition of laminae reflect the processes involved in their formation and can be preserved in the rock record over geologic time; however, diagenetic and metamorphic alteration can lead to the loss of primary information and confusion over the interpretation of their origins. As potential records of ancient life, laminae can preserve evidence of microbial activity over billions of years of Earth's history. On planetary bodies such as Mars, laminae in sedimentary rocks are common and represent significant features of interest that can record habitable conditions (e.g., the presence of liquid water) at the time of their formation. Here we review the significance of laminae as targets for astrobiological exploration. We discuss common mechanisms by which laminae form in natural environments on Earth, present arguments and evidence for laminae as potential biosignatures, and describe how such information is presented in the NASA Life Detection Knowledge Base.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2025.0012","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Laminae are millimeter-scale features in rocks created by physiochemical processes that can be influenced by the presence and activities of communities of organisms that occur as biofilms and microbial mats. The structure and composition of laminae reflect the processes involved in their formation and can be preserved in the rock record over geologic time; however, diagenetic and metamorphic alteration can lead to the loss of primary information and confusion over the interpretation of their origins. As potential records of ancient life, laminae can preserve evidence of microbial activity over billions of years of Earth's history. On planetary bodies such as Mars, laminae in sedimentary rocks are common and represent significant features of interest that can record habitable conditions (e.g., the presence of liquid water) at the time of their formation. Here we review the significance of laminae as targets for astrobiological exploration. We discuss common mechanisms by which laminae form in natural environments on Earth, present arguments and evidence for laminae as potential biosignatures, and describe how such information is presented in the NASA Life Detection Knowledge Base.

板层作为潜在的生物标志。
纹层是岩石中毫米级的特征,由物理化学过程形成,可能受到生物群落的存在和活动的影响,这些生物群落以生物膜和微生物垫的形式出现。纹层的结构和组成反映了其形成过程,并能在地质年代的岩石记录中保存下来;然而,成岩和变质蚀变会导致原始信息的丢失和对其起源解释的混乱。作为古代生命的潜在记录,沉积层可以保存地球几十亿年历史上微生物活动的证据。在像火星这样的行星体上,沉积岩中的纹层是很常见的,它们代表了重要的特征,可以记录它们形成时的可居住条件(例如,液态水的存在)。本文综述了纹层作为天体生物学探测目标的重要意义。我们讨论了纹层在地球自然环境中形成的常见机制,提出了纹层作为潜在生物特征的论点和证据,并描述了这些信息是如何在NASA生命探测知识库中呈现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信