Marcel Moura, Vanessa Kern, Knut Jørgen Måløy, Andreas Carlson, Eirik G Flekkøy
{"title":"Droplet spreading in a wedge: a route to fluid rheology for power-law liquids.","authors":"Marcel Moura, Vanessa Kern, Knut Jørgen Måløy, Andreas Carlson, Eirik G Flekkøy","doi":"10.1039/d5sm00286a","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring the rheology of liquids typically requires precise control over shear rates and stresses. Here, we describe an alternative route for predicting the characteristic features of a power-law fluid by simply observing the capillary spreading dynamics of viscous droplets in a wedge-shaped geometry. In this confined setting, capillary and viscous forces interact to produce a spreading dynamics described by anomalous diffusion, a process where the front position grows as a power-law in time with an exponent that differs from the value 1/2 found in classical diffusion. We derive a nonlinear diffusion equation that captures this behavior, and we show that the diffusion exponent is directly related to the rheological exponent of the fluid. We verify this relationship by using both experiments and simulations for different power-law fluids. As the predictions are independent from flow-specific details, this approach provides a robust tool for inferring rheological properties from the spreading dynamics.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00286a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring the rheology of liquids typically requires precise control over shear rates and stresses. Here, we describe an alternative route for predicting the characteristic features of a power-law fluid by simply observing the capillary spreading dynamics of viscous droplets in a wedge-shaped geometry. In this confined setting, capillary and viscous forces interact to produce a spreading dynamics described by anomalous diffusion, a process where the front position grows as a power-law in time with an exponent that differs from the value 1/2 found in classical diffusion. We derive a nonlinear diffusion equation that captures this behavior, and we show that the diffusion exponent is directly related to the rheological exponent of the fluid. We verify this relationship by using both experiments and simulations for different power-law fluids. As the predictions are independent from flow-specific details, this approach provides a robust tool for inferring rheological properties from the spreading dynamics.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.