Martin Werres, Dariusz Niedziela, Arnulf Latz, Birger Horstmann
{"title":"Stress-Driven Whisker Formation in Lithium Metal Batteries.","authors":"Martin Werres, Dariusz Niedziela, Arnulf Latz, Birger Horstmann","doi":"10.1021/acs.nanolett.5c01910","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium metal batteries are promising for next-generation high-energy-density batteries, especially when lithium is directly plated on a current collector. However, lithium whiskers can form in the early stages of electroplating. These whiskers lead to low Coulombic efficiency due to isolated lithium formation during stripping. The mechanism of whisker formation is not fully understood, and different mechanisms are proposed in the literature. Herein, we computationally explore a stress-driven extrusion mechanism through cracks in the solid-electrolyte-interphase (SEI), which explains the experimentally observed root growth of lithium whiskers. We model the extrusion as a flow of a power-law Herschel-Bulkley fluid parametrized by the experimental power-law creep behavior of lithium, which results in the typical one-dimensional whisker shape. Consequently, in competition with SEI self-healing, SEI cracking determines the emergence of whiskers, giving a simple rule of thumb to avoid whisker formation in liquid electrolytes.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"11244-11250"},"PeriodicalIF":9.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12291588/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01910","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium metal batteries are promising for next-generation high-energy-density batteries, especially when lithium is directly plated on a current collector. However, lithium whiskers can form in the early stages of electroplating. These whiskers lead to low Coulombic efficiency due to isolated lithium formation during stripping. The mechanism of whisker formation is not fully understood, and different mechanisms are proposed in the literature. Herein, we computationally explore a stress-driven extrusion mechanism through cracks in the solid-electrolyte-interphase (SEI), which explains the experimentally observed root growth of lithium whiskers. We model the extrusion as a flow of a power-law Herschel-Bulkley fluid parametrized by the experimental power-law creep behavior of lithium, which results in the typical one-dimensional whisker shape. Consequently, in competition with SEI self-healing, SEI cracking determines the emergence of whiskers, giving a simple rule of thumb to avoid whisker formation in liquid electrolytes.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.