A Note on Finding Large Transversals Efficiently

IF 0.5 4区 数学 Q3 MATHEMATICS
Michael Anastos, Patrick Morris
{"title":"A Note on Finding Large Transversals Efficiently","authors":"Michael Anastos,&nbsp;Patrick Morris","doi":"10.1002/jcd.21990","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>×</mo>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> array filled with symbols, a <i>transversal</i> is a collection of entries with distinct rows, columns and symbols. In this note we show that if no symbol appears more than <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>β</mi>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> times, the array contains a transversal of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>β</mi>\n \n <mo>∕</mo>\n \n <mn>4</mn>\n \n <mo>−</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>. In particular, if the array is filled with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> symbols, each appearing <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> times (an equi-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> square), we get transversals of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mo>∕</mo>\n \n <mn>4</mn>\n \n <mo>−</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>. Moreover, our proof gives a deterministic algorithm with polynomial running time, that finds these transversals.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 9","pages":"338-342"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21990","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In an n × n array filled with symbols, a transversal is a collection of entries with distinct rows, columns and symbols. In this note we show that if no symbol appears more than β n times, the array contains a transversal of size ( 1 β 4 o ( 1 ) ) n . In particular, if the array is filled with n symbols, each appearing n times (an equi- n square), we get transversals of size ( 3 4 o ( 1 ) ) n . Moreover, our proof gives a deterministic algorithm with polynomial running time, that finds these transversals.

关于高效查找大截线的注释
在一个充满符号的n × n数组中,截线是具有不同行、列和符号的条目的集合。在这个笔记中,我们表明如果没有符号出现超过β n次,该阵列包含大小为(1−β∕4)的横截面−0 (1))n。特别是,如果数组被n个符号填充,每个符号出现n次(一个相等- n的平方),我们得到大小为(3∕4−0)的截线(1);此外,我们的证明给出了一个运行时间为多项式的确定性算法,可以找到这些截线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信