Defective Poly(heptazine imide) Nanosheets for Efficient One-Step Two-Electron Photocatalytic O2 Reduction to Medical-Like H2O2

Dr. Laiyu Luo, Qinglong Wu, Dr. Siyu Wang, Haojie Song, Jiaqi Li, Liping Zhang, Prof. Qun Zhang, Prof. Yuanxing Fang, Prof. Baojiang Jiang, Prof. Xinchen Wang
{"title":"Defective Poly(heptazine imide) Nanosheets for Efficient One-Step Two-Electron Photocatalytic O2 Reduction to Medical-Like H2O2","authors":"Dr. Laiyu Luo,&nbsp;Qinglong Wu,&nbsp;Dr. Siyu Wang,&nbsp;Haojie Song,&nbsp;Jiaqi Li,&nbsp;Liping Zhang,&nbsp;Prof. Qun Zhang,&nbsp;Prof. Yuanxing Fang,&nbsp;Prof. Baojiang Jiang,&nbsp;Prof. Xinchen Wang","doi":"10.1002/ange.202507415","DOIUrl":null,"url":null,"abstract":"<p>Poly(heptazine imide) (PHI) is a promising photocatalyst for hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production; however, enhancing its specific surface area to expose internal active sites and understanding their roles in key mechanistic steps for the H<sub>2</sub>O<sub>2</sub> synthesis remain challenging. Here, we utilized organic cations to exfoliate bulk PHI and fabricate PHI nanosheets for producing H<sub>2</sub>O<sub>2</sub> at a rate of 27.35 mmol g<sup>−1</sup> h<sup>−1</sup> under simulated solar light irradiation, outperforming most of the reported carbon nitride-based catalysts. Importantly, after 36 h of cyclic accumulation reactions in a self-created spiral flow reactor, the H<sub>2</sub>O<sub>2</sub> concentration stabilized at 2.7 wt.%, close to medical sterilization levels. In situ spectroscopic characterizations and density functional theory calculations revealed that the exfoliation results in molecular reconfiguration of the PHI basal planes, forming the active sites to promote charge separation and electron localization. This new structure also creates midgap states, enabling direct H<sub>2</sub>O<sub>2</sub> production via a one-step, two-electron pathway, bypassing the superoxide radical pathway. Theoretical calculations suggest that the localized electronic structure created by the active sites favors the protonation of adsorbed O<sub>2</sub> and stabilizes the *OOH species, which converts to H<sub>2</sub>O<sub>2</sub>. This study elucidates and underscores the importance of active-site reconfiguration for efficient photocatalytic oxygen reduction reaction (ORR) pathways.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202507415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(heptazine imide) (PHI) is a promising photocatalyst for hydrogen peroxide (H2O2) production; however, enhancing its specific surface area to expose internal active sites and understanding their roles in key mechanistic steps for the H2O2 synthesis remain challenging. Here, we utilized organic cations to exfoliate bulk PHI and fabricate PHI nanosheets for producing H2O2 at a rate of 27.35 mmol g−1 h−1 under simulated solar light irradiation, outperforming most of the reported carbon nitride-based catalysts. Importantly, after 36 h of cyclic accumulation reactions in a self-created spiral flow reactor, the H2O2 concentration stabilized at 2.7 wt.%, close to medical sterilization levels. In situ spectroscopic characterizations and density functional theory calculations revealed that the exfoliation results in molecular reconfiguration of the PHI basal planes, forming the active sites to promote charge separation and electron localization. This new structure also creates midgap states, enabling direct H2O2 production via a one-step, two-electron pathway, bypassing the superoxide radical pathway. Theoretical calculations suggest that the localized electronic structure created by the active sites favors the protonation of adsorbed O2 and stabilizes the *OOH species, which converts to H2O2. This study elucidates and underscores the importance of active-site reconfiguration for efficient photocatalytic oxygen reduction reaction (ORR) pathways.

Abstract Image

有缺陷的聚七嗪亚胺纳米片用于一步双电子光催化O2还原为医用类H2O2
聚七嗪亚胺(PHI)是一种很有前途的过氧化氢(H2O2)光催化剂。然而,提高其比表面积以暴露内部活性位点并了解其在H2O2合成关键机制步骤中的作用仍然具有挑战性。在这里,我们利用有机阳离子剥离大块PHI,并在模拟太阳光照下制备了PHI纳米片,以27.35 mmol g−1 h−1的速率产生H2O2,优于大多数报道的氮化碳基催化剂。重要的是,在自建的螺旋流反应器中循环积累反应36小时后,H2O2浓度稳定在2.7 wt.%,接近医疗灭菌水平。原位光谱表征和密度泛函理论计算表明,剥落导致PHI基面分子重新配置,形成促进电荷分离和电子定位的活性位点。这种新结构还创造了中间间隙状态,通过一步、双电子途径直接产生H2O2,绕过超氧自由基途径。理论计算表明,活性位点产生的局域电子结构有利于吸附O2的质子化,并稳定*OOH物质,使其转化为H2O2。这项研究阐明并强调了活性位点重构对于高效光催化氧还原反应(ORR)途径的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信