Existence of Magic Rectangle Sets Over Finite Abelian Groups

IF 0.5 4区 数学 Q3 MATHEMATICS
Shikang Yu, Tao Feng, Hengrui Liu
{"title":"Existence of Magic Rectangle Sets Over Finite Abelian Groups","authors":"Shikang Yu,&nbsp;Tao Feng,&nbsp;Hengrui Liu","doi":"10.1002/jcd.21987","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n </mrow>\n </mrow>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math> be positive integers. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mo>+</mo>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be a finite abelian group of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>a</mi>\n \n <mi>b</mi>\n \n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math>. A <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>-magic rectangle set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mstyle>\n <mspace></mspace>\n \n <mtext>MRS</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mo>;</mo>\n \n <mi>c</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is a collection of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math> arrays of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>a</mi>\n \n <mo>×</mo>\n \n <mi>b</mi>\n </mrow>\n </mrow>\n </semantics></math>, whose entries are elements of a group <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, each appearing exactly once, such that the sum of each row in every array equals a constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>γ</mi>\n \n <mo>∈</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, and the sum of each column in every array equals a constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mo>∈</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. This paper establishes the necessary and sufficient conditions for the existence of an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mstyle>\n <mspace></mspace>\n \n <mtext>MRS</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mo>;</mo>\n \n <mi>c</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, for any finite abelian group <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, thereby confirming a conjecture posted by Cichacz and Hinc.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 9","pages":"329-337"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21987","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let a , b , and c be positive integers. Let ( G , + ) be a finite abelian group of order a b c . A G -magic rectangle set MRS G ( a , b ; c ) is a collection of c arrays of size a × b , whose entries are elements of a group G , each appearing exactly once, such that the sum of each row in every array equals a constant γ G , and the sum of each column in every array equals a constant δ G . This paper establishes the necessary and sufficient conditions for the existence of an MRS G ( a , b ; c ) , for any finite abelian group G , thereby confirming a conjecture posted by Cichacz and Hinc.

有限阿贝尔群上幻矩形集的存在性
设a b c为正整数。设(G,+)是a、b、c阶的有限阿贝尔群。G幻矩形集MRS G(a, b;C)是C个大小为a × b的数组的集合,它的项是群G中的元素,每个元素只出现一次,使得每个数组中每一行的和等于一个常数γ∈G,每个数组中每一列的和等于一个常数δ∈G。本文建立了一类MRS G()存在的充分必要条件A, b;c),对于任意有限阿贝尔群G,从而证实了Cichacz和Hinc的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信