{"title":"Existence of Magic Rectangle Sets Over Finite Abelian Groups","authors":"Shikang Yu, Tao Feng, Hengrui Liu","doi":"10.1002/jcd.21987","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n </mrow>\n </mrow>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math> be positive integers. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mo>+</mo>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be a finite abelian group of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>a</mi>\n \n <mi>b</mi>\n \n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math>. A <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>-magic rectangle set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mstyle>\n <mspace></mspace>\n \n <mtext>MRS</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mo>;</mo>\n \n <mi>c</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is a collection of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math> arrays of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>a</mi>\n \n <mo>×</mo>\n \n <mi>b</mi>\n </mrow>\n </mrow>\n </semantics></math>, whose entries are elements of a group <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, each appearing exactly once, such that the sum of each row in every array equals a constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>γ</mi>\n \n <mo>∈</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, and the sum of each column in every array equals a constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mo>∈</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. This paper establishes the necessary and sufficient conditions for the existence of an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mstyle>\n <mspace></mspace>\n \n <mtext>MRS</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mo>;</mo>\n \n <mi>c</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, for any finite abelian group <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, thereby confirming a conjecture posted by Cichacz and Hinc.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 9","pages":"329-337"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21987","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let , and be positive integers. Let be a finite abelian group of order . A -magic rectangle set is a collection of arrays of size , whose entries are elements of a group , each appearing exactly once, such that the sum of each row in every array equals a constant , and the sum of each column in every array equals a constant . This paper establishes the necessary and sufficient conditions for the existence of an , for any finite abelian group , thereby confirming a conjecture posted by Cichacz and Hinc.
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.