Investigation of Hydraulic Fracture Propagation Characteristics in the Shale Reservoir With Natural Fractures and Bedding Plane

IF 1.2 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Geofluids Pub Date : 2025-07-14 DOI:10.1155/gfl/9970558
Daixin Deng, Qingshan Ren, Yinglin Yang, Jinxi Wang, Chunlin Zeng, Pei He, Jie Liu, Pu Liu, Yunxu Luo
{"title":"Investigation of Hydraulic Fracture Propagation Characteristics in the Shale Reservoir With Natural Fractures and Bedding Plane","authors":"Daixin Deng,&nbsp;Qingshan Ren,&nbsp;Yinglin Yang,&nbsp;Jinxi Wang,&nbsp;Chunlin Zeng,&nbsp;Pei He,&nbsp;Jie Liu,&nbsp;Pu Liu,&nbsp;Yunxu Luo","doi":"10.1155/gfl/9970558","DOIUrl":null,"url":null,"abstract":"<p>Hydraulic fracturing is the principal technical method about the generation of sophisticated fracture system in shale gas development; there are still significant challenges in enunciating the origination and extension of hydraulic fracture and optimizing design methods about hydraulic fracturing. The manuscript builds a small-scale shale reservoir model that containing randomly complex natural fractures and bedding by means of the continuous–discontinuous element method (CDEM); it provides detailed investigation of the effects including the shale reservoir burial depth along with the fracturing fluid viscosity, and flow rate on the generation and growth of fracture systems. The simulated findings suggest that hydraulic fractures are more likely to be captured by bedding planes and tend to extend along the bedding planes when the burial depth is shallow. The phenomenon of fractures penetrating bedding planes increases obviously under high flow rate conditions, resulting in more branching and interlacing in the vertical direction. The guiding effect of bedding planes on the propagation direction of hydro fractures gradually weakens as the viscosity of the fracturing fluid increases. Increasing the flow velocity of fracturing fluid enlarges outer boundary of hydraulic fracture system, and hydraulic fracture system’s propagation length and aperture grow substantially within the same period of injecting time. The high-viscosity fracturing fluid will lead to relatively single propagation of hydraulic fracture branches that is in favor of forming a single main fracture. This research puts forward a novel perspective for understanding the expansion characteristics of elaborate hydraulic fracture systems and persistent refinement of hydraulic fracturing operations in shale reservoirs.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2025 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/gfl/9970558","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/gfl/9970558","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Hydraulic fracturing is the principal technical method about the generation of sophisticated fracture system in shale gas development; there are still significant challenges in enunciating the origination and extension of hydraulic fracture and optimizing design methods about hydraulic fracturing. The manuscript builds a small-scale shale reservoir model that containing randomly complex natural fractures and bedding by means of the continuous–discontinuous element method (CDEM); it provides detailed investigation of the effects including the shale reservoir burial depth along with the fracturing fluid viscosity, and flow rate on the generation and growth of fracture systems. The simulated findings suggest that hydraulic fractures are more likely to be captured by bedding planes and tend to extend along the bedding planes when the burial depth is shallow. The phenomenon of fractures penetrating bedding planes increases obviously under high flow rate conditions, resulting in more branching and interlacing in the vertical direction. The guiding effect of bedding planes on the propagation direction of hydro fractures gradually weakens as the viscosity of the fracturing fluid increases. Increasing the flow velocity of fracturing fluid enlarges outer boundary of hydraulic fracture system, and hydraulic fracture system’s propagation length and aperture grow substantially within the same period of injecting time. The high-viscosity fracturing fluid will lead to relatively single propagation of hydraulic fracture branches that is in favor of forming a single main fracture. This research puts forward a novel perspective for understanding the expansion characteristics of elaborate hydraulic fracture systems and persistent refinement of hydraulic fracturing operations in shale reservoirs.

Abstract Image

具有天然裂缝和层理面的页岩储层水力裂缝扩展特征研究
水力压裂是页岩气开发中形成复杂裂缝体系的主要技术手段;在阐明水力裂缝的成因和延伸、优化水力压裂设计方法等方面仍存在重大挑战。采用连续-不连续单元法(CDEM)建立了含随机复杂天然裂缝和层理的小尺度页岩储层模型;详细研究了页岩储层埋藏深度、压裂液粘度和流量对裂缝系统生成和发育的影响。模拟结果表明,当埋深较浅时,水力裂缝更容易被层理平面捕获,并倾向于沿层理平面延伸。在大流量条件下,裂缝穿透层理面的现象明显增加,垂向分支和交错增多。随着压裂液黏度的增加,层理面对水力裂缝扩展方向的引导作用逐渐减弱。随着压裂液流速的增大,水力裂缝系统的外边界增大,在相同注入时间内,水力裂缝系统的扩展长度和孔径大幅增大。高粘度压裂液将导致水力裂缝分支相对单一的扩展,有利于形成单一的主裂缝。该研究为理解复杂水力裂缝系统的扩展特征和页岩储层水力压裂作业的持续改进提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geofluids
Geofluids 地学-地球化学与地球物理
CiteScore
2.80
自引率
17.60%
发文量
835
期刊介绍: Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines. Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信