Coupling Between Earth′s Magnetotail and the Outer Radiation Belt via Field-Line Curvature Scattering

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
A. V. Artemyev, V. Angelopoulos, X.-J. Zhang, J. Bortnik, Y. Miyoshi, C. Wilkins, S. Kasahara, T. Hori, A. Matsuoka, T. Mitani, T. Takashima, M. Teramoto, K. Yamamoto, I. Shinohara
{"title":"Coupling Between Earth′s Magnetotail and the Outer Radiation Belt via Field-Line Curvature Scattering","authors":"A. V. Artemyev,&nbsp;V. Angelopoulos,&nbsp;X.-J. Zhang,&nbsp;J. Bortnik,&nbsp;Y. Miyoshi,&nbsp;C. Wilkins,&nbsp;S. Kasahara,&nbsp;T. Hori,&nbsp;A. Matsuoka,&nbsp;T. Mitani,&nbsp;T. Takashima,&nbsp;M. Teramoto,&nbsp;K. Yamamoto,&nbsp;I. Shinohara","doi":"10.1029/2025JA034184","DOIUrl":null,"url":null,"abstract":"<p>The Earth's outer radiation belt is populated by relativistic (<span></span><math>\n <semantics>\n <mrow>\n <mo>≥</mo>\n <mn>500</mn>\n </mrow>\n <annotation> ${\\ge} 500$</annotation>\n </semantics></math> keV) electrons, which are typically confined by the strong dipole magnetic field but can precipitate into the atmosphere through scattering by electromagnetic waves. In contrast, the magnetotail primarily contains electrons with energies below 200 keV, which are predominantly scattered and precipitated due to magnetic field-line curvature scattering (FLCS). In this study, we demonstrate that FLCS can also scatter and precipitate relativistic electrons from the outer radiation belt. Using coordinated observations from the ERG/Arase satellite and low-altitude ELFIN CubeSats in the outer radiation belt, we compare electron fluxes across different <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-shells and energy ranges. Our analysis reveals that the outer edge of the radiation belt exhibits isotropic electron populations above a minimum energy that increases with proximity to Earth. Such isotropization energy dependence on distance, or <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-shell, agrees with that observed simultaneously at the ELFIN satellite, at low-Earth orbit, where it has been known as the electron isotropy boundary (IBe). This agreement between low-altitude and near-equatorial observations during satellite conjunctions suggests that the <i>IBe pattern</i> may extend to the outskirts of the traditional outer radiation belt. From that distance, the associated FLCS may facilitate precipitation of relativistic electrons up to several MeV. Therefore, FLCS—known to shape the <i>IBe pattern</i> —plays a key role in radiation belt dynamics.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JA034184","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Earth's outer radiation belt is populated by relativistic ( 500 ${\ge} 500$  keV) electrons, which are typically confined by the strong dipole magnetic field but can precipitate into the atmosphere through scattering by electromagnetic waves. In contrast, the magnetotail primarily contains electrons with energies below 200 keV, which are predominantly scattered and precipitated due to magnetic field-line curvature scattering (FLCS). In this study, we demonstrate that FLCS can also scatter and precipitate relativistic electrons from the outer radiation belt. Using coordinated observations from the ERG/Arase satellite and low-altitude ELFIN CubeSats in the outer radiation belt, we compare electron fluxes across different L $L$ -shells and energy ranges. Our analysis reveals that the outer edge of the radiation belt exhibits isotropic electron populations above a minimum energy that increases with proximity to Earth. Such isotropization energy dependence on distance, or L $L$ -shell, agrees with that observed simultaneously at the ELFIN satellite, at low-Earth orbit, where it has been known as the electron isotropy boundary (IBe). This agreement between low-altitude and near-equatorial observations during satellite conjunctions suggests that the IBe pattern may extend to the outskirts of the traditional outer radiation belt. From that distance, the associated FLCS may facilitate precipitation of relativistic electrons up to several MeV. Therefore, FLCS—known to shape the IBe pattern —plays a key role in radiation belt dynamics.

通过场线曲率散射地球磁尾与外辐射带之间的耦合
地球的外辐射带充满了相对论性(≥500$ {\ge} 500$ keV)电子,这些电子通常被强偶极磁场所限制,但可以通过电磁波散射而沉淀到大气中。相反,磁尾主要包含能量低于200kev的电子,这些电子主要是由于磁场线曲率散射(FLCS)而散射和沉淀的。在这项研究中,我们证明了FLCS也可以散射和沉淀来自外部辐射带的相对论电子。利用ERG/Arase卫星和低空ELFIN立方体卫星在外辐射带的协调观测,我们比较了不同L$ L$壳层和能量范围的电子通量。我们的分析表明,辐射带的外缘显示出各向同性的电子种群,其最小能量随着与地球的接近而增加。这种依赖于距离的各向同性能量,或L$ L$ -壳层,与ELFIN卫星在低地球轨道上同时观测到的结果一致,在那里它被称为电子各向同性边界(IBe)。低空观测和近赤道观测之间的这种一致性表明,IBe模式可能延伸到传统外辐射带的外围。从这个距离来看,相关的FLCS可能会促进相对论电子的沉淀,最高可达几兆电子伏。因此,flcs -已知可以形成IBe模式-在辐射带动力学中起关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信