{"title":"On Tournament Inversion","authors":"Raphael Yuster","doi":"10.1002/jgt.23251","DOIUrl":null,"url":null,"abstract":"<p>An <i>inversion</i> of a tournament <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n </semantics></math> is obtained by reversing the direction of all edges with both endpoints in some set of vertices. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mtext>inv</mtext>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>T</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be the minimum length of a sequence of inversions using sets of size at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> that result in the transitive tournament. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mtext>inv</mtext>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be the maximum of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mtext>inv</mtext>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>T</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> taken over <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>-vertex tournaments. It is well known that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mtext>inv</mtext>\n \n <mn>2</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>∕</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math> and it was recently proved by Alon et al. that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>inv</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≔</mo>\n \n <msub>\n <mtext>inv</mtext>\n \n <mi>n</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>n</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. In these two extreme cases (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>), random tournaments are extremal objects. It is proved that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mtext>inv</mtext>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is <i>not</i> attained by random tournaments when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <msub>\n <mi>k</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and conjectured that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mtext>inv</mtext>\n \n <mn>3</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is (only) attained by (quasi)random tournaments. It is further proved that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <msub>\n <mtext>inv</mtext>\n \n <mn>3</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>[</mo>\n </mrow>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>12</mn>\n </mfrac>\n \n <mo>,</mo>\n \n <mn>0.0992</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <msub>\n <mtext>inv</mtext>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mfrac>\n <mn>1</mn>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n \n <mo>+</mo>\n \n <msub>\n <mi>δ</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>,</mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mrow>\n <mn>2</mn>\n \n <mrow>\n <mo>⌊</mo>\n \n <mrow>\n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌋</mo>\n </mrow>\n </mrow>\n </mfrac>\n \n <mo>−</mo>\n \n <msub>\n <mi>ϵ</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>ϵ</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>δ</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <msub>\n <mi>k</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 1","pages":"82-91"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23251","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23251","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
An inversion of a tournament is obtained by reversing the direction of all edges with both endpoints in some set of vertices. Let be the minimum length of a sequence of inversions using sets of size at most that result in the transitive tournament. Let be the maximum of taken over -vertex tournaments. It is well known that and it was recently proved by Alon et al. that . In these two extreme cases ( and ), random tournaments are extremal objects. It is proved that is not attained by random tournaments when and conjectured that is (only) attained by (quasi)random tournaments. It is further proved that and , where for all and for all .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .