Separating the Edges of a Graph by Cycles and by Subdivisions of K 4

IF 0.9 3区 数学 Q2 MATHEMATICS
Fábio Botler, Tássio Naia
{"title":"Separating the Edges of a Graph by Cycles and by Subdivisions of \n \n \n \n \n K\n 4","authors":"Fábio Botler,&nbsp;Tássio Naia","doi":"10.1002/jgt.23248","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A <i>separating system</i> of a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a family <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> of subgraphs of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> for which the following holds: for all distinct edges <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n </mrow>\n </mrow>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, there exists an element in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> that contains <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n </mrow>\n </mrow>\n </semantics></math> but not <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n </mrow>\n </mrow>\n </semantics></math>. Recently, it has been shown that every graph of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> admits a separating system consisting of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>19</mn>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> paths, improving the previous almost linear bound of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <msup>\n <mi>log</mi>\n \n <mo>⋆</mo>\n </msup>\n \n <mo> </mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, and settling conjectures posed by Balogh, Csaba, Martin, and Pluhár and by Falgas-Ravry, Kittipassorn, Korándi, Letzter, and Narayanan. We investigate a natural generalization of these results to subdivisions of cliques, showing that every graph admits both a separating system consisting of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>41</mn>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> edges and cycles and a separating system consisting of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>82</mn>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> edges and subdivisions of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>4</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 1","pages":"41-47"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23248","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A separating system of a graph G is a family S of subgraphs of G for which the following holds: for all distinct edges e and f of G , there exists an element in S that contains e but not f . Recently, it has been shown that every graph of order n admits a separating system consisting of 19 n paths, improving the previous almost linear bound of O ( n log n ) , and settling conjectures posed by Balogh, Csaba, Martin, and Pluhár and by Falgas-Ravry, Kittipassorn, Korándi, Letzter, and Narayanan. We investigate a natural generalization of these results to subdivisions of cliques, showing that every graph admits both a separating system consisting of 41 n edges and cycles and a separating system consisting of 82 n edges and subdivisions of K 4 .

用k4的循环和细分来分离图的边
图G的分离系统是G的子图S族,满足下列条件:对于所有不同的边e和f (G)S中存在一个元素包含e但不包含f。最近,已经证明了每个n阶图都存在一个由19n条路径组成的分离系统,改进了之前几乎线性的O (n logn),并解决了由Balogh、Csaba、Martin和Pluhár以及Falgas-Ravry、Kittipassorn、Korándi、Letzter和Narayanan提出的猜想。我们研究了这些结果对集团细分的自然推广,表明每个图都承认一个由41 n条边和环组成的分离系统和一个由82 n条边和细分组成的分离系统k4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信