High-Entropy Modulated High-Spin Localized Cobalt Sites Enhance Catalytic Ozonation for Efficient Odor Control

Rumeng Zhang, Hao Zhou, Tao Shao, Qiyu Lian, Mengliang Hu, Ji Mei, Shulin Zuo, Jiahao Huang, Zhuoyun Tang, Dehua Xia
{"title":"High-Entropy Modulated High-Spin Localized Cobalt Sites Enhance Catalytic Ozonation for Efficient Odor Control","authors":"Rumeng Zhang,&nbsp;Hao Zhou,&nbsp;Tao Shao,&nbsp;Qiyu Lian,&nbsp;Mengliang Hu,&nbsp;Ji Mei,&nbsp;Shulin Zuo,&nbsp;Jiahao Huang,&nbsp;Zhuoyun Tang,&nbsp;Dehua Xia","doi":"10.1002/ange.202507109","DOIUrl":null,"url":null,"abstract":"<p>Catalytic ozonation technology is crucial for environmental remediation due to its exceptional efficiency and capability for complete mineralization of organic pollutants. However, hindered by spin-forbidden transitions, effective catalytic ozonation remains contingent upon the electronic properties and interfacial interactions of the catalyst. Recent studies identify interfacial atomic metal-oxygen species (*O) as a key descriptor in catalytic ozonation, determining the derivation of reactive species and subsEquationuent reactivity. Herein, we modulated the high-spin localized Co active sites in HE-Co<sub>3</sub>O<sub>4</sub> via a high-entropy strategy, which selectively stabilizes *O surface species, thereby enhancing catalytic ozonation efficiency. HE-Co<sub>3</sub>O<sub>4</sub> exhibits a five-fold higher degradation rate than Co<sub>3</sub>O<sub>4</sub> for 50 ppm CH<sub>3</sub>SH elimination (63-fold the mass activity compared to commercial MnO<sub>2</sub>) while maintaining exceptional stability over 24 h at 298 K. Electron paramagnetic resonance (EPR) and magnetization hysteresis (M-H) measurements confirm the transition of Co<sup>3+</sup> to high-spin states in HE-Co<sub>3</sub>O<sub>4</sub>. Density functional theory (DFT) calculations reveal that unpaired electrons enhance the hybridization of Co 3d with O 2p orbitals, thereby establishing a *O-mediated interfacial pathway. This mechanism is directly observed through in situ Raman spectroscopy. These findings provide insights into the targeted modulation of catalyst electronic structures for ozone-catalyzed environmental remediation.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202507109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic ozonation technology is crucial for environmental remediation due to its exceptional efficiency and capability for complete mineralization of organic pollutants. However, hindered by spin-forbidden transitions, effective catalytic ozonation remains contingent upon the electronic properties and interfacial interactions of the catalyst. Recent studies identify interfacial atomic metal-oxygen species (*O) as a key descriptor in catalytic ozonation, determining the derivation of reactive species and subsEquationuent reactivity. Herein, we modulated the high-spin localized Co active sites in HE-Co3O4 via a high-entropy strategy, which selectively stabilizes *O surface species, thereby enhancing catalytic ozonation efficiency. HE-Co3O4 exhibits a five-fold higher degradation rate than Co3O4 for 50 ppm CH3SH elimination (63-fold the mass activity compared to commercial MnO2) while maintaining exceptional stability over 24 h at 298 K. Electron paramagnetic resonance (EPR) and magnetization hysteresis (M-H) measurements confirm the transition of Co3+ to high-spin states in HE-Co3O4. Density functional theory (DFT) calculations reveal that unpaired electrons enhance the hybridization of Co 3d with O 2p orbitals, thereby establishing a *O-mediated interfacial pathway. This mechanism is directly observed through in situ Raman spectroscopy. These findings provide insights into the targeted modulation of catalyst electronic structures for ozone-catalyzed environmental remediation.

Abstract Image

高熵调制的高自旋定位钴位点增强催化臭氧化有效控制气味
催化臭氧氧化技术以其优异的效率和完全矿化有机污染物的能力在环境修复中发挥着至关重要的作用。然而,由于自旋禁止转变的阻碍,有效的催化臭氧化仍然取决于催化剂的电子性质和界面相互作用。最近的研究发现,界面原子金属-氧(*O)是催化臭氧化的关键描述符,决定了反应物质的衍生和随后的反应活性。本文通过高熵策略调控HE-Co3O4中高自旋定域Co活性位点,选择性地稳定*O表面物质,从而提高催化臭氧化效率。在298k条件下,HE-Co3O4的CH3SH去除率比Co3O4高5倍(质量活性是商用MnO2的63倍),同时在24小时内保持优异的稳定性。电子顺磁共振(EPR)和磁化滞后(M-H)测量证实了HE-Co3O4中Co3+向高自旋态的转变。密度泛函理论(DFT)计算表明,未配对电子增强了Co 3d与O 2p轨道的杂化,从而建立了*O介导的界面途径。这一机制通过原位拉曼光谱直接观察到。这些发现为臭氧催化环境修复中催化剂电子结构的定向调节提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信