Bao Li, Bo Zhang, Xiang Bai, Jiahui Zhang, Xinyue Chang, Lifeng Hou, Hao Huang, Tiantian Lu, Shi Wang, Zhong Jin, Qian Wang
{"title":"A Dynamic Self-Healing Protective Layer Enabling Stable Zinc Ion Batteries through Strong Zn-S Affinity and Intramolecular Hydrogen Bonding","authors":"Bao Li, Bo Zhang, Xiang Bai, Jiahui Zhang, Xinyue Chang, Lifeng Hou, Hao Huang, Tiantian Lu, Shi Wang, Zhong Jin, Qian Wang","doi":"10.1002/ange.202503345","DOIUrl":null,"url":null,"abstract":"<p>Aqueous Zn-ion batteries (AZIBs) are promising for large-scale energy storage, yet Zn metal anodes face issues like hydrogen evolution, dendrite growth, and corrosion. Herein, we develop a self-healable, adhesive polymer layer for AZIBs by polymerizing thioctic acid (TA) on Zn surfaces. Thanks to the strong and spontaneous affinity between Zn metal surface and S atoms on polymer chains, this protective layer can firmly and dynamically adhere to the Zn surface. Thus, even at a thickness of <1 µm, the protective layer exhibits a strong adhesion force of up to 10.5 N with Zn surface, while the abundant carboxyl groups in the protective layer can form intramolecular hydrogen bonds, endowing its high self-healing property and enhancing its strength (Young's modulus reaches 15.1 GPa). Such a protective layer effectively inhibits the dendrite growth physically and regulates the Zn<sup>2+</sup> migration and deposition behavior chemically. Therefore, the symmetric cells can be cycled for more than 1000 h at the current densities of 1.0 and 5.0 mA cm<sup>−2</sup>, respectively. Full cells with NH4V4O10 also run stably for 1000 cycles with a high capacity retention. This work offers a promising strategy for designing multifunctional polymer coating towards high-stability and long-cycling AZIBs.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202503345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous Zn-ion batteries (AZIBs) are promising for large-scale energy storage, yet Zn metal anodes face issues like hydrogen evolution, dendrite growth, and corrosion. Herein, we develop a self-healable, adhesive polymer layer for AZIBs by polymerizing thioctic acid (TA) on Zn surfaces. Thanks to the strong and spontaneous affinity between Zn metal surface and S atoms on polymer chains, this protective layer can firmly and dynamically adhere to the Zn surface. Thus, even at a thickness of <1 µm, the protective layer exhibits a strong adhesion force of up to 10.5 N with Zn surface, while the abundant carboxyl groups in the protective layer can form intramolecular hydrogen bonds, endowing its high self-healing property and enhancing its strength (Young's modulus reaches 15.1 GPa). Such a protective layer effectively inhibits the dendrite growth physically and regulates the Zn2+ migration and deposition behavior chemically. Therefore, the symmetric cells can be cycled for more than 1000 h at the current densities of 1.0 and 5.0 mA cm−2, respectively. Full cells with NH4V4O10 also run stably for 1000 cycles with a high capacity retention. This work offers a promising strategy for designing multifunctional polymer coating towards high-stability and long-cycling AZIBs.