{"title":"On Graphs With No Induced \n \n \n \n \n P\n 5\n \n \n \n or \n \n \n \n \n K\n 5\n \n −\n e","authors":"Arnab Char, T. Karthick","doi":"10.1002/jgt.23240","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we are interested in some problems related to chromatic number and clique number for the class of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-free graphs and prove the following the results: (a) If <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a connected (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n </semantics></math>)-free graph with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>7</mn>\n </mrow>\n </mrow>\n </semantics></math>, then either <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is the complement of a bipartite graph or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has a clique cut-set. Moreover, there is a connected (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n </semantics></math>)-free imperfect graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>6</mn>\n </mrow>\n </mrow>\n </semantics></math> and has no clique cut-set. This strengthens a result of Malyshev and Lobanova (<i>Discrete Applied Mathematics</i> 219 [2017] 158–166). (b) If <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n </semantics></math>)-free graph with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>max</mi>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>7</mn>\n \n <mo>,</mo>\n \n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Moreover, the bound is tight when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∉</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>6</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. This result, together with known results, partially answers a question of Ju and Huang (<i>Theoretical Computer Science</i> 993 [2024] Article No.: 114465) and also improves a result of Xu [Manuscript 2022]. While <span>Chromatic Number</span> is known to be <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n \n <mi>P</mi>\n </mrow>\n </mrow>\n </semantics></math>-hard for the class of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graphs, our results, together with some known results, imply that <span>Chromatic Number</span> can be solved in polynomial time for the class of (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n </semantics></math>)-free graphs, which may be of independent interest.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 1","pages":"5-22"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23240","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we are interested in some problems related to chromatic number and clique number for the class of -free graphs and prove the following the results: (a) If is a connected ()-free graph with , then either is the complement of a bipartite graph or has a clique cut-set. Moreover, there is a connected ()-free imperfect graph with and has no clique cut-set. This strengthens a result of Malyshev and Lobanova (Discrete Applied Mathematics 219 [2017] 158–166). (b) If is a ()-free graph with , then . Moreover, the bound is tight when . This result, together with known results, partially answers a question of Ju and Huang (Theoretical Computer Science 993 [2024] Article No.: 114465) and also improves a result of Xu [Manuscript 2022]. While Chromatic Number is known to be -hard for the class of -free graphs, our results, together with some known results, imply that Chromatic Number can be solved in polynomial time for the class of ()-free graphs, which may be of independent interest.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .