Spatial Distribution and Plasmaspheric Ducting of Auroral Kilometric Radiation Revealed by Wind, Polar, and Arase

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2025-07-15 DOI:10.1029/2025AV001743
Siyuan Wu, Daniel K. Whiter, Sai Zhang, Ulrich Taubenschuss, Philippe Zarka, Georg Fischer, Laurent Lamy, Shengyi Ye, James Waters, Baptiste Cecconi, Ping Li, Caitriona M. Jackman, Alexandra R. Fogg, Claire Baskevitch, Yoshiya Kasahara, Yasumasa Kasaba
{"title":"Spatial Distribution and Plasmaspheric Ducting of Auroral Kilometric Radiation Revealed by Wind, Polar, and Arase","authors":"Siyuan Wu,&nbsp;Daniel K. Whiter,&nbsp;Sai Zhang,&nbsp;Ulrich Taubenschuss,&nbsp;Philippe Zarka,&nbsp;Georg Fischer,&nbsp;Laurent Lamy,&nbsp;Shengyi Ye,&nbsp;James Waters,&nbsp;Baptiste Cecconi,&nbsp;Ping Li,&nbsp;Caitriona M. Jackman,&nbsp;Alexandra R. Fogg,&nbsp;Claire Baskevitch,&nbsp;Yoshiya Kasahara,&nbsp;Yasumasa Kasaba","doi":"10.1029/2025AV001743","DOIUrl":null,"url":null,"abstract":"<p>Auroral Kilometric Radiation (AKR), the dominant radio emission from Earth, has been extensively studied, though previous analyses were constrained by limited spacecraft coverage. This study utilizes long-term observations from Polar, Wind, and Arase spacecraft to generate comprehensive global AKR occurrence rate maps, revealing a high-latitude and nightside preference. A detailed investigation of the equatorial shadow region confirms that the dense plasmasphere blocks AKR emissions across all wave frequencies. Low-frequency emissions (&lt;100 kHz) are presents outside the shadow region at larger radial distance, which is attributed to magnetosheath reflection, while higher-frequency emissions (&gt;100 kHz) propagate via plasmaspheric ducting and leakage, filling the equatorial region immediately outside the plasmasphere. Ray-tracing simulations identify low-density ducts within the plasmasphere as crucial channels that enable AKR to penetrate the dense plasmasphere, particularly at higher frequencies. These results align with meridional AKR observations, offering new insights into AKR propagation patterns.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 4","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001743","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025AV001743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Auroral Kilometric Radiation (AKR), the dominant radio emission from Earth, has been extensively studied, though previous analyses were constrained by limited spacecraft coverage. This study utilizes long-term observations from Polar, Wind, and Arase spacecraft to generate comprehensive global AKR occurrence rate maps, revealing a high-latitude and nightside preference. A detailed investigation of the equatorial shadow region confirms that the dense plasmasphere blocks AKR emissions across all wave frequencies. Low-frequency emissions (<100 kHz) are presents outside the shadow region at larger radial distance, which is attributed to magnetosheath reflection, while higher-frequency emissions (>100 kHz) propagate via plasmaspheric ducting and leakage, filling the equatorial region immediately outside the plasmasphere. Ray-tracing simulations identify low-density ducts within the plasmasphere as crucial channels that enable AKR to penetrate the dense plasmasphere, particularly at higher frequencies. These results align with meridional AKR observations, offering new insights into AKR propagation patterns.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

由风、极和冰揭示的极光千米辐射的空间分布和等离子体传导
极光千米辐射(AKR)是地球上主要的射电辐射,尽管之前的分析受到有限的航天器覆盖范围的限制,但它已经被广泛研究。本研究利用极地、Wind和Arase航天器的长期观测数据,生成了全面的全球AKR发生率图,揭示了高纬度和夜侧的偏好。对赤道阴影区域的详细调查证实,密集的等离子层阻挡了所有波频率上的AKR发射。低频发射(<100 kHz)在较大径向距离的阴影区域外出现,这归因于磁鞘反射,而高频发射(>100 kHz)通过等离子体传导和泄漏传播,填充了等离子体圈外的赤道区域。射线追踪模拟发现,等离子体层内的低密度管道是AKR穿透致密等离子体层的关键通道,特别是在更高频率下。这些结果与经向AKR观测结果一致,为AKR传播模式提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信