Alberto Ardura-Fabregat, Lance Fredrick Pahutan Bosch, Emile Wogram, Omar Mossad, Roman Sankowski, Philipp Aktories, Lina Kieger, James Cook, Dilara Hasavci, Hatice Ulupinar, Daniel Brock, Fang Wang, Nicola Iovino, Samuel Wald, Sebastian Preissl, Bahtiyar Yilmaz, Daniel Schnepf, Andrew J. Macpherson, Thomas Blank, Katrin Kierdorf, Marco Prinz
{"title":"Response of spatially defined microglia states with distinct chromatin accessibility in a mouse model of Alzheimer’s disease","authors":"Alberto Ardura-Fabregat, Lance Fredrick Pahutan Bosch, Emile Wogram, Omar Mossad, Roman Sankowski, Philipp Aktories, Lina Kieger, James Cook, Dilara Hasavci, Hatice Ulupinar, Daniel Brock, Fang Wang, Nicola Iovino, Samuel Wald, Sebastian Preissl, Bahtiyar Yilmaz, Daniel Schnepf, Andrew J. Macpherson, Thomas Blank, Katrin Kierdorf, Marco Prinz","doi":"10.1038/s41593-025-02006-0","DOIUrl":null,"url":null,"abstract":"<p>Microglial spatial heterogeneity remains a crucial yet not fully answered question in the context of potential cell-directed therapies for Alzheimer’s disease (AD). There is an unclear understanding of the dynamics of distinct microglia states adjacent to or far from amyloid-beta (Aβ) plaques and their contributions to neurodegenerative diseases. Here we combine multicolor fluorescence cell fate mapping, single-cell transcriptional analysis, epigenetic profiling, immunohistochemistry and computational modeling to comprehensively characterize the relation of plaque-associated microglia (PAM) and non-plaque-associated microglia (non-PAM) in a mouse model of AD. We show that non-PAM are a distinct and highly dynamic microglial state, transitioning to PAM after Aβ plaque deposition in female mice. Non-PAM modulate the cell population expansion in response to amyloid deposition and rapidly respond to environmental cues. Indeed, Csf1 signaling modulates non-PAM-to-PAM transition during disease progression. Our data suggest that microglia states and their dynamics between each other can have distinct contributions to disease, and they may be targeted for the treatment of AD.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"7 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-02006-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microglial spatial heterogeneity remains a crucial yet not fully answered question in the context of potential cell-directed therapies for Alzheimer’s disease (AD). There is an unclear understanding of the dynamics of distinct microglia states adjacent to or far from amyloid-beta (Aβ) plaques and their contributions to neurodegenerative diseases. Here we combine multicolor fluorescence cell fate mapping, single-cell transcriptional analysis, epigenetic profiling, immunohistochemistry and computational modeling to comprehensively characterize the relation of plaque-associated microglia (PAM) and non-plaque-associated microglia (non-PAM) in a mouse model of AD. We show that non-PAM are a distinct and highly dynamic microglial state, transitioning to PAM after Aβ plaque deposition in female mice. Non-PAM modulate the cell population expansion in response to amyloid deposition and rapidly respond to environmental cues. Indeed, Csf1 signaling modulates non-PAM-to-PAM transition during disease progression. Our data suggest that microglia states and their dynamics between each other can have distinct contributions to disease, and they may be targeted for the treatment of AD.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.