Weichen Huang, Dian Lyu, James R. Stieger, Ian H. Gotlib, Vivek Buch, Anthony D. Wagner, Josef Parvizi
{"title":"Direct interactions between the human insula and hippocampus during memory encoding","authors":"Weichen Huang, Dian Lyu, James R. Stieger, Ian H. Gotlib, Vivek Buch, Anthony D. Wagner, Josef Parvizi","doi":"10.1038/s41593-025-02005-1","DOIUrl":null,"url":null,"abstract":"<p>The hippocampus is critical for encoding episodic memories, but how it interacts with cortical regions during this process remains unclear. In this study, 16 participants with implanted electrodes in the insula (217 sites) and hippocampus (131 sites) viewed emotionally valenced words and attempted to recall them. During encoding, one subset of insular neuronal populations showed changes in aperiodic activity that predicted successful recall. These insular changes followed hippocampal theta but preceded hippocampal ripples. Another subset of insular sites responded to word valence, unrelated to memory performance. Direct electrical stimulation of memory-related insular sites evoked early responses in the ipsilateral hippocampus, whereas stimulation of valence-related sites did not. Conversely, stimulating hippocampal sites produced slow, variable signals across all insular sites, suggesting asymmetric communication between the hippocampus and the insula. These findings provide a glimpse of mesoscale hippocampal interactions with functionally selective neuronal populations within a given cortical structure.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"9 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-02005-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The hippocampus is critical for encoding episodic memories, but how it interacts with cortical regions during this process remains unclear. In this study, 16 participants with implanted electrodes in the insula (217 sites) and hippocampus (131 sites) viewed emotionally valenced words and attempted to recall them. During encoding, one subset of insular neuronal populations showed changes in aperiodic activity that predicted successful recall. These insular changes followed hippocampal theta but preceded hippocampal ripples. Another subset of insular sites responded to word valence, unrelated to memory performance. Direct electrical stimulation of memory-related insular sites evoked early responses in the ipsilateral hippocampus, whereas stimulation of valence-related sites did not. Conversely, stimulating hippocampal sites produced slow, variable signals across all insular sites, suggesting asymmetric communication between the hippocampus and the insula. These findings provide a glimpse of mesoscale hippocampal interactions with functionally selective neuronal populations within a given cortical structure.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.