Zhiqian Zhang, Elijah L. Mena, Richard T. Timms, Itay Koren, Stephen J. Elledge
{"title":"Degrons: defining the rules of protein degradation","authors":"Zhiqian Zhang, Elijah L. Mena, Richard T. Timms, Itay Koren, Stephen J. Elledge","doi":"10.1038/s41580-025-00870-z","DOIUrl":null,"url":null,"abstract":"<p>Degrons are pivotal components of the ubiquitin–proteasome system, serving as the recognition determinants through which E3 ubiquitin ligases identify their substrates. Degrons have central roles in both protein quality control and intracellular signalling pathways, and mutations that dysregulate degron activity are associated with a wide range of diseases, including cancer, immunological disorders and neurodegeneration. The number of well-defined degrons remains sparse relative to the ~600 E3 ubiquitin ligases encoded in the human genome. Recent advances in high-throughput degron discovery technologies have accelerated progress in this area, expanding the number of N- and C-terminal degrons, internal degrons and ubiquitin-independent degrons defined experimentally at high resolution. In this Review, we discuss the latest insights into the molecular mechanisms through which degrons act, their functional importance and their relevance in human disease, and consider how bifunctional molecules harness degrons to enable targeted protein degradation for therapeutic benefit.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"14 1","pages":""},"PeriodicalIF":90.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41580-025-00870-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Degrons are pivotal components of the ubiquitin–proteasome system, serving as the recognition determinants through which E3 ubiquitin ligases identify their substrates. Degrons have central roles in both protein quality control and intracellular signalling pathways, and mutations that dysregulate degron activity are associated with a wide range of diseases, including cancer, immunological disorders and neurodegeneration. The number of well-defined degrons remains sparse relative to the ~600 E3 ubiquitin ligases encoded in the human genome. Recent advances in high-throughput degron discovery technologies have accelerated progress in this area, expanding the number of N- and C-terminal degrons, internal degrons and ubiquitin-independent degrons defined experimentally at high resolution. In this Review, we discuss the latest insights into the molecular mechanisms through which degrons act, their functional importance and their relevance in human disease, and consider how bifunctional molecules harness degrons to enable targeted protein degradation for therapeutic benefit.
期刊介绍:
Nature Reviews Molecular Cell Biology is a prestigious journal that aims to be the primary source of reviews and commentaries for the scientific communities it serves. The journal strives to publish articles that are authoritative, accessible, and enriched with easily understandable figures, tables, and other display items. The goal is to provide an unparalleled service to authors, referees, and readers, and the journal works diligently to maximize the usefulness and impact of each article. Nature Reviews Molecular Cell Biology publishes a variety of article types, including Reviews, Perspectives, Comments, and Research Highlights, all of which are relevant to molecular and cell biologists. The journal's broad scope ensures that the articles it publishes reach the widest possible audience.