{"title":"Surface-polyconvex models for soft elastic solids","authors":"Martin Horák , Michal Šmejkal , Martin Kružík","doi":"10.1016/j.jmps.2025.106250","DOIUrl":null,"url":null,"abstract":"<div><div>Soft solids with surface energy exhibit complex mechanical behavior, necessitating advanced constitutive models to capture the interplay between bulk and surface mechanics. This interplay has profound implications for material design and emerging technologies. In this work, we set up variational models for bulk-surface elasticity and explore a novel class of surface-polyconvex constitutive models that account for surface energy while ensuring the existence of minimizers.</div><div>These models are implemented within a finite element framework and validated through benchmark problems and applications, including, e.g., the liquid bridge problem and the Rayleigh-Plateau instability, for which the surface energy plays the dominant role. The results demonstrate the ability of surface-polyconvex models to accurately capture surface-driven phenomena, establishing them as a powerful tool for advancing the mechanics of soft materials in both engineering and biological applications.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"204 ","pages":"Article 106250"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625002261","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soft solids with surface energy exhibit complex mechanical behavior, necessitating advanced constitutive models to capture the interplay between bulk and surface mechanics. This interplay has profound implications for material design and emerging technologies. In this work, we set up variational models for bulk-surface elasticity and explore a novel class of surface-polyconvex constitutive models that account for surface energy while ensuring the existence of minimizers.
These models are implemented within a finite element framework and validated through benchmark problems and applications, including, e.g., the liquid bridge problem and the Rayleigh-Plateau instability, for which the surface energy plays the dominant role. The results demonstrate the ability of surface-polyconvex models to accurately capture surface-driven phenomena, establishing them as a powerful tool for advancing the mechanics of soft materials in both engineering and biological applications.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.