Junhui Peng, Bing-Jun Wang, Nicolas Svetec, Li Zhao
{"title":"Gene regulatory networks and essential transcription factors for de novo-originated genes","authors":"Junhui Peng, Bing-Jun Wang, Nicolas Svetec, Li Zhao","doi":"10.1038/s41559-025-02747-y","DOIUrl":null,"url":null,"abstract":"<p>The regulation of gene expression is crucial for the functional integration of evolutionarily young genes, particularly those that emerge de novo. However, the regulatory programmes governing the expression of de novo genes remain unknown. To address this, we applied computational methods to single-cell RNA sequencing data, identifying key transcription factors probably instrumental in regulating de novo genes. We found that transcription factors do not have the same propensity for regulating de novo genes; some transcription factors regulate more de novo genes than others. Leveraging genetic and genomic tools in <i>Drosophila</i>, we further examined the role of two key transcription factors, <i>achintya</i> and <i>vismay</i>, and the regulatory architecture of new genes. Our findings identify key transcription factors associated with the expression of de novo genes and highlight how transcription factors, and possibly their duplications, are linked to the expressional regulation of de novo genes.</p>","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"23 1","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41559-025-02747-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The regulation of gene expression is crucial for the functional integration of evolutionarily young genes, particularly those that emerge de novo. However, the regulatory programmes governing the expression of de novo genes remain unknown. To address this, we applied computational methods to single-cell RNA sequencing data, identifying key transcription factors probably instrumental in regulating de novo genes. We found that transcription factors do not have the same propensity for regulating de novo genes; some transcription factors regulate more de novo genes than others. Leveraging genetic and genomic tools in Drosophila, we further examined the role of two key transcription factors, achintya and vismay, and the regulatory architecture of new genes. Our findings identify key transcription factors associated with the expression of de novo genes and highlight how transcription factors, and possibly their duplications, are linked to the expressional regulation of de novo genes.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.