Kexin Liu, Yun Xie, Tao Ding, Cong Guo, Pan Guo, Jie Liu, Xing Liu, Liyi Shi, Zhihao Pan, Xuesong Cai, Jianming Wang, Zhuyi Wang, Guosheng Shi, Shuai Yuan
{"title":"High‐Strength Ultrathin Solid‐State Electrolyte with Ion‐Rectifying Honeycomb‐Like Skeleton for Lithium Metal Batteries Free from External Pressure","authors":"Kexin Liu, Yun Xie, Tao Ding, Cong Guo, Pan Guo, Jie Liu, Xing Liu, Liyi Shi, Zhihao Pan, Xuesong Cai, Jianming Wang, Zhuyi Wang, Guosheng Shi, Shuai Yuan","doi":"10.1002/adfm.202511558","DOIUrl":null,"url":null,"abstract":"This work breaks the long‐standing thickness‐performance trade‐off in solid‐state electrolytes by designing an ultrathin (10 µm) membrane featuring an ion‐rectifying honeycomb‐like skeleton. The composite skeleton integrates boron nitride nanofibers (BNNFs) and lithiated nafion (Linafion) mosaics, simultaneously enabling rapid Li<jats:sup>+</jats:sup> transport and reinforcing mechanical robustness. The BNNFs provide abundant Lewis acid sites to anchor TFSI<jats:sup>‐</jats:sup> anions, while Linafion domains facilitate rapid cation exchange via sulfonic acid groups, synergistically promoting Li<jats:sup>+</jats:sup> dissociation from both lithium salts and poly(ester‐ether). This unique ion‐rectification mechanism achieves ultrafast Li⁺ conduction with a low activation energy (0.099 eV), yielding a remarkable room‐temperature ionic conductivity of 5.5 × 10<jats:sup>−4</jats:sup> S cm<jats:sup>−1</jats:sup> and a high Li<jats:sup>+</jats:sup> transference number of 0.85. The all solid‐state electrolyte membrane simultaneously exhibits exceptional tensile strength (30 MPa) and compatibility with high‐loading NCM811 cathodes (12 mg cm<jats:sup>−2</jats:sup>) and ultrathin lithium anodes (40 µm). The pouch‐type full cells deliver high energy densities (316.6 Wh kg<jats:sup>−1</jats:sup>, 838.1 Wh L<jats:sup>−1</jats:sup>) and cycling stability (92.2% retention after 100 cycles) at 25 °C. Notably, the full cell can work in a wide temperature range, while maintaining 120.6 mAh g<jats:sup>−1</jats:sup> at ‐10 °C without external pressure. This strategy enables practical high‐energy solid‐state batteries using ultrathin electrolytes with robust mechanics, rapid conduction, and interfacial stability.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"195 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511558","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work breaks the long‐standing thickness‐performance trade‐off in solid‐state electrolytes by designing an ultrathin (10 µm) membrane featuring an ion‐rectifying honeycomb‐like skeleton. The composite skeleton integrates boron nitride nanofibers (BNNFs) and lithiated nafion (Linafion) mosaics, simultaneously enabling rapid Li+ transport and reinforcing mechanical robustness. The BNNFs provide abundant Lewis acid sites to anchor TFSI‐ anions, while Linafion domains facilitate rapid cation exchange via sulfonic acid groups, synergistically promoting Li+ dissociation from both lithium salts and poly(ester‐ether). This unique ion‐rectification mechanism achieves ultrafast Li⁺ conduction with a low activation energy (0.099 eV), yielding a remarkable room‐temperature ionic conductivity of 5.5 × 10−4 S cm−1 and a high Li+ transference number of 0.85. The all solid‐state electrolyte membrane simultaneously exhibits exceptional tensile strength (30 MPa) and compatibility with high‐loading NCM811 cathodes (12 mg cm−2) and ultrathin lithium anodes (40 µm). The pouch‐type full cells deliver high energy densities (316.6 Wh kg−1, 838.1 Wh L−1) and cycling stability (92.2% retention after 100 cycles) at 25 °C. Notably, the full cell can work in a wide temperature range, while maintaining 120.6 mAh g−1 at ‐10 °C without external pressure. This strategy enables practical high‐energy solid‐state batteries using ultrathin electrolytes with robust mechanics, rapid conduction, and interfacial stability.
这项工作通过设计一种超薄(10微米)膜,具有离子整流蜂窝状骨架,打破了固态电解质长期存在的厚度-性能权衡。复合骨架集成了氮化硼纳米纤维(BNNFs)和锂化国家(Linafion)马赛克,同时实现Li+的快速运输和增强机械坚固性。BNNFs提供了丰富的Lewis酸位点来固定TFSI阴离子,而Linafion结构域通过磺酸基团促进快速阳离子交换,协同促进锂盐和聚酯醚的Li+解离。这种独特的离子整流机制以低活化能(0.099 eV)实现了Li+的超快导电,产生了5.5 × 10−4 S cm−1的室温离子电导率和0.85的高Li+转移数。全固态电解质膜同时具有优异的抗拉强度(30 MPa),并与高负载NCM811阴极(12 mg cm - 2)和超薄锂阳极(40µm)兼容。在25°C下,袋型全电池具有高能量密度(316.6 Wh kg−1,838.1 Wh L−1)和循环稳定性(100次循环后保留率为92.2%)。值得注意的是,完整的电池可以在很宽的温度范围内工作,同时在‐10°C下保持120.6 mAh g - 1,没有外部压力。这种策略使使用超薄电解质的实用高能固态电池具有强大的力学,快速传导和界面稳定性。
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.