Janus Adsorption of Polar Ion Hubs for Simultaneous Regulation of Zinc Deposition Kinetics and Interfacial Stability in Long‐Cycle Aqueous Zinc‐Ion Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chang Dong, Haojie Ji, Tao Yang, Hongbo Wu, Chao Liu, Xuedong Xie, Ouwei Sheng, Dexin Yang, Tianyu Shen, Zeyang Sun, Jian Zhang, Rongkun Zheng, Chaofeng Zhang, Xuefeng Zhang
{"title":"Janus Adsorption of Polar Ion Hubs for Simultaneous Regulation of Zinc Deposition Kinetics and Interfacial Stability in Long‐Cycle Aqueous Zinc‐Ion Batteries","authors":"Chang Dong, Haojie Ji, Tao Yang, Hongbo Wu, Chao Liu, Xuedong Xie, Ouwei Sheng, Dexin Yang, Tianyu Shen, Zeyang Sun, Jian Zhang, Rongkun Zheng, Chaofeng Zhang, Xuefeng Zhang","doi":"10.1002/adfm.202513529","DOIUrl":null,"url":null,"abstract":"Aqueous zinc‐ion batteries (AZIBs) have garnered significant attention as potential candidates for next‐generation energy storage systems, attributed to their high capacity, cost‐effectiveness, and environmentally benign nature. However, the uncontrolled proliferation of zinc dendrites and severe interfacial side reactions have emerged as substantial obstacles to their practical application. In this study, a novel “polar ionic hub regulation” strategy is introduced, which involves the covalent bonding of hydrophilic‐hydrophobic bifunctional groups to construct an asymmetric topological structure, thereby forming a nanoscale Janus interface at the molecular level. The carboxyl and amide groups synergistically anchor Zn<jats:sup>2+</jats:sup> ions through spatial cooperation, creating localized Zn<jats:sup>2+</jats:sup>‐rich domains. Meanwhile, the benzene ring repels free water molecules via its hydrophobic effect, effectively blocking the interfacial side reactions initiated by water molecules. Consequently, the zinc anode achieves an ultralong cycling lifespan exceeding 3600 h at 1 mA cm<jats:sup>−2</jats:sup> and 1 mAh cm<jats:sup>−2</jats:sup>. Moreover, the zinc symmetric cell attains a cumulative plating capacity of 4.875 Ah cm<jats:sup>−2</jats:sup> at a high areal capacity of 5 mAh cm<jats:sup>−2</jats:sup>. Full cells paired with Na<jats:sub>2</jats:sub>V<jats:sub>6</jats:sub>O<jats:sub>16</jats:sub>·3H<jats:sub>2</jats:sub>O and I<jats:sub>2</jats:sub> cathodes exhibit significantly enhanced performance. Notably, the Zn||I<jats:sub>2</jats:sub> system demonstrates exceptional cycling durability. This work provides a robust foundation for the practical application of high‐performance aqueous zinc‐ion batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"14 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202513529","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc‐ion batteries (AZIBs) have garnered significant attention as potential candidates for next‐generation energy storage systems, attributed to their high capacity, cost‐effectiveness, and environmentally benign nature. However, the uncontrolled proliferation of zinc dendrites and severe interfacial side reactions have emerged as substantial obstacles to their practical application. In this study, a novel “polar ionic hub regulation” strategy is introduced, which involves the covalent bonding of hydrophilic‐hydrophobic bifunctional groups to construct an asymmetric topological structure, thereby forming a nanoscale Janus interface at the molecular level. The carboxyl and amide groups synergistically anchor Zn2+ ions through spatial cooperation, creating localized Zn2+‐rich domains. Meanwhile, the benzene ring repels free water molecules via its hydrophobic effect, effectively blocking the interfacial side reactions initiated by water molecules. Consequently, the zinc anode achieves an ultralong cycling lifespan exceeding 3600 h at 1 mA cm−2 and 1 mAh cm−2. Moreover, the zinc symmetric cell attains a cumulative plating capacity of 4.875 Ah cm−2 at a high areal capacity of 5 mAh cm−2. Full cells paired with Na2V6O16·3H2O and I2 cathodes exhibit significantly enhanced performance. Notably, the Zn||I2 system demonstrates exceptional cycling durability. This work provides a robust foundation for the practical application of high‐performance aqueous zinc‐ion batteries.
极性离子中心的双面吸附对长周期锌离子水溶液电池中锌沉积动力学和界面稳定性的同时调节
水性锌离子电池(azib)由于其高容量、高成本效益和环保的特性,作为下一代储能系统的潜在候选者,已经引起了人们的广泛关注。然而,锌枝晶不受控制的扩散和严重的界面副反应已成为其实际应用的重大障碍。在本研究中,引入了一种新的“极性离子枢纽调节”策略,该策略涉及亲疏水双官能团的共价键,以构建不对称拓扑结构,从而在分子水平上形成纳米级Janus界面。羧基和酰胺基通过空间协同作用协同锚定Zn2+离子,形成局部的富Zn2+结构域。同时,苯环通过疏水作用排斥游离水分子,有效阻断了水分子引发的界面副反应。因此,锌阳极在1ma cm - 2和1mah cm - 2下实现了超过3600小时的超长循环寿命。此外,锌对称电池在5 mAh cm−2的高面积容量下获得了4.875 Ah cm−2的累积电镀容量。与Na2V6O16·3H2O和I2阴极配对的全电池性能显著增强。值得注意的是,Zn b| |I2系统表现出了出色的循环耐久性。该研究为高性能锌离子水电池的实际应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信