Kelp‐Like Carbon Nanoribbons Superstructures With Embedded Ni Nanoparticles for Intelligent Flexible Electromagnetic Protection and Sensing Applications

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinci Zhang, Mingming Wang, Li Chang, Chunjie Yu, Xiaoxuan Fan, Maosheng Cao, Lin Li
{"title":"Kelp‐Like Carbon Nanoribbons Superstructures With Embedded Ni Nanoparticles for Intelligent Flexible Electromagnetic Protection and Sensing Applications","authors":"Xinci Zhang, Mingming Wang, Li Chang, Chunjie Yu, Xiaoxuan Fan, Maosheng Cao, Lin Li","doi":"10.1002/adfm.202508333","DOIUrl":null,"url":null,"abstract":"To ensure the effective operation of equipment in dynamic electromagnetic environments, the development of intelligent electromagnetic protection materials is crucial. However, inherent contradictions often exist between electromagnetic response technologies across different frequency bands and electronic sensing technologies, making the compatibility of multiple technologies a persistent challenge. Inspired by the structure and function of kelp, this study successfully develops a two‐dimensional nanocarbon ribbon superstructure embedded with nickel nanoparticles (2D Ni@NCRS) through the one‐step pyrolysis of bulk Ni‐MOFs, effectively addresses the aforementioned contradictions. This biomimetic kelp‐like structure features interconnected nanocages and a porous architecture, significantly enhances the electromagnetic wave (EMW) attenuation capability and impedance matching characteristics of the materials, thereby achieves exceptional EMW absorption performance. Furthermore, the functional film based on 2D Ni@NCRS fully leverages the conductive network, thermal insulation properties, and ultraviolet absorption characteristics of the materials, simultaneously enables multifunctional capabilities such as gigahertz‐infrared‐compatible stealth, ultraviolet protection, and flexible strain sensing. This innovative design integrates electromagnetic stealth protection, environmental camouflage, and sensing into a unified system, enables multifunctional synergies and enhances the potential for integrated material applications in complex environments.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"84 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202508333","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure the effective operation of equipment in dynamic electromagnetic environments, the development of intelligent electromagnetic protection materials is crucial. However, inherent contradictions often exist between electromagnetic response technologies across different frequency bands and electronic sensing technologies, making the compatibility of multiple technologies a persistent challenge. Inspired by the structure and function of kelp, this study successfully develops a two‐dimensional nanocarbon ribbon superstructure embedded with nickel nanoparticles (2D Ni@NCRS) through the one‐step pyrolysis of bulk Ni‐MOFs, effectively addresses the aforementioned contradictions. This biomimetic kelp‐like structure features interconnected nanocages and a porous architecture, significantly enhances the electromagnetic wave (EMW) attenuation capability and impedance matching characteristics of the materials, thereby achieves exceptional EMW absorption performance. Furthermore, the functional film based on 2D Ni@NCRS fully leverages the conductive network, thermal insulation properties, and ultraviolet absorption characteristics of the materials, simultaneously enables multifunctional capabilities such as gigahertz‐infrared‐compatible stealth, ultraviolet protection, and flexible strain sensing. This innovative design integrates electromagnetic stealth protection, environmental camouflage, and sensing into a unified system, enables multifunctional synergies and enhances the potential for integrated material applications in complex environments.
嵌入Ni纳米颗粒的海带类碳纳米带超结构用于智能柔性电磁保护和传感应用
为了保证设备在动态电磁环境下的有效运行,智能电磁防护材料的研制至关重要。然而,不同频段的电磁响应技术与电子传感技术之间往往存在固有的矛盾,使得多技术的兼容性成为一个持续的挑战。受海带结构和功能的启发,本研究通过对大块Ni - mof的一步热解,成功地开发了一种嵌入镍纳米颗粒的二维纳米碳带超结构(2D Ni@NCRS),有效地解决了上述矛盾。这种仿生海带状结构具有相互连接的纳米笼和多孔结构,显著增强了材料的电磁波(EMW)衰减能力和阻抗匹配特性,从而实现了卓越的EMW吸收性能。此外,基于2D Ni@NCRS的功能薄膜充分利用了材料的导电网络、隔热性能和紫外线吸收特性,同时实现了多功能功能,如千兆赫-红外兼容隐身、紫外线防护和柔性应变传感。这种创新的设计将电磁隐身保护、环境伪装和传感集成到一个统一的系统中,实现多功能协同作用,增强了综合材料在复杂环境中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信