Oxygen Vacancy‐Driven Lattice Modulation in Zn2P2O7: A Novel Anode Enabling Accelerated Kinetics and Long Cycling Stability for Sodium‐Ion Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Cao, Waqar Ahmad, Maolin Yang, Yuhui Weng, Xiang Ji, Keli Yang, Jinqi Li, Wenhai Ji, Ping Miao, Feng Lin, Ming Zhang, Kejun Zhang, Jingchao Jiang, Ziwei Chen, Chengdu Liang, Jun Chen
{"title":"Oxygen Vacancy‐Driven Lattice Modulation in Zn2P2O7: A Novel Anode Enabling Accelerated Kinetics and Long Cycling Stability for Sodium‐Ion Batteries","authors":"Wei Cao, Waqar Ahmad, Maolin Yang, Yuhui Weng, Xiang Ji, Keli Yang, Jinqi Li, Wenhai Ji, Ping Miao, Feng Lin, Ming Zhang, Kejun Zhang, Jingchao Jiang, Ziwei Chen, Chengdu Liang, Jun Chen","doi":"10.1002/adfm.202509841","DOIUrl":null,"url":null,"abstract":"Lattice defect‐induced tuning of the chemical bonding environment is a promising strategy to enhance the performance of electrode materials. The deliberate introduction of oxygen vacancies (OVs) has demonstrated remarkable efficacy in boosting electronic conductivity and ion diffusion kinetics, while the resultant chemical bond engineering optimizes the bonding environment, thereby enhancing structural stability and electrochemical reversibility. This study pioneers a dual‐modification strategy involving OVs ‐induced C‐P bonds formation in the Zn<jats:sub>2</jats:sub>P<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> structure. Through systematic electrochemical characterization complemented by density functional theory (DFT) calculations, the synergistic mechanism between OVs‐mediated electron structure modulation and C‐P bonds reinforcement is elucidated. As a novel anode material for sodium‐ion batteries, the engineered Zn<jats:sub>2</jats:sub>P<jats:sub>2</jats:sub>O<jats:sub>7−x</jats:sub>@C composite exhibits substantially enhanced rate capability (316.6 mAh g<jats:sup>−1</jats:sup> at 0.05 A g<jats:sup>−1</jats:sup>) and cycling stability (171.3 mAh g <jats:sup>−1</jats:sup> after 1000 cycles at 1 A g <jats:sup>−1</jats:sup>), in stark contrast to the rapid performance degradation observed in pristine Zn<jats:sub>2</jats:sub>P<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub>. Furthermore, the extension of this strategy to lithium‐ion battery systems further validates the universal effectiveness of this defect/chemical bonding synergy strategy in improving alkali metal ions storage, demonstrating its broad applicability across various energy storage platforms.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"1978 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202509841","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice defect‐induced tuning of the chemical bonding environment is a promising strategy to enhance the performance of electrode materials. The deliberate introduction of oxygen vacancies (OVs) has demonstrated remarkable efficacy in boosting electronic conductivity and ion diffusion kinetics, while the resultant chemical bond engineering optimizes the bonding environment, thereby enhancing structural stability and electrochemical reversibility. This study pioneers a dual‐modification strategy involving OVs ‐induced C‐P bonds formation in the Zn2P2O7 structure. Through systematic electrochemical characterization complemented by density functional theory (DFT) calculations, the synergistic mechanism between OVs‐mediated electron structure modulation and C‐P bonds reinforcement is elucidated. As a novel anode material for sodium‐ion batteries, the engineered Zn2P2O7−x@C composite exhibits substantially enhanced rate capability (316.6 mAh g−1 at 0.05 A g−1) and cycling stability (171.3 mAh g −1 after 1000 cycles at 1 A g −1), in stark contrast to the rapid performance degradation observed in pristine Zn2P2O7. Furthermore, the extension of this strategy to lithium‐ion battery systems further validates the universal effectiveness of this defect/chemical bonding synergy strategy in improving alkali metal ions storage, demonstrating its broad applicability across various energy storage platforms.
氧空位驱动的Zn2P2O7晶格调制:钠离子电池加速动力学和长循环稳定性的新型阳极
晶格缺陷诱导的化学键环境调谐是提高电极材料性能的一种很有前途的策略。有意引入氧空位(OVs)在提高电子电导率和离子扩散动力学方面具有显著的效果,而由此产生的化学键工程优化了键合环境,从而提高了结构稳定性和电化学可逆性。这项研究开创了一种双重修饰策略,涉及OVs诱导Zn2P2O7结构中C - P键的形成。通过系统的电化学表征和密度泛函理论(DFT)计算,阐明了OVs介导的电子结构调制和C - P键增强之间的协同机制。作为一种新型的钠离子电池负极材料,Zn2P2O7 - x@C复合材料在0.05 a g−1条件下表现出了显著增强的负极性能(316.6 mAh g−1)和循环稳定性(在1 a g−1条件下1000次循环后171.3 mAh g−1),与原始Zn2P2O7的快速性能下降形成鲜明对比。此外,将该策略扩展到锂离子电池系统进一步验证了该缺陷/化学键协同策略在改善碱金属离子存储方面的普遍有效性,证明了其在各种储能平台上的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信