Benjamin Maaß, Avijit Barua, Norman Vincenz Ewald, Elizabeth Robertson, Kartik Gaur, Suk In Park, Sven Rodt, Jin-Dong Song, Stephan Reitzenstein and Janik Wolters
{"title":"Storage of single photons from a semiconductor quantum dot in a room-temperature atomic vapor memory with on-demand retrieval","authors":"Benjamin Maaß, Avijit Barua, Norman Vincenz Ewald, Elizabeth Robertson, Kartik Gaur, Suk In Park, Sven Rodt, Jin-Dong Song, Stephan Reitzenstein and Janik Wolters","doi":"10.1088/2058-9565/ade910","DOIUrl":null,"url":null,"abstract":"Interfacing light from solid-state single-photon sources with scalable and robust room-temperature quantum memories has been a long-standing challenge in photonic quantum information technologies due to inherent noise processes and time-scale mismatches between the operating conditions of solid-state and atomic systems. Here, we demonstrate storage of single photons from a semiconductor quantum dot (QD) device in a room-temperature atomic vapor memory and their on-demand retrieval. A deterministically fabricated InGaAs QD light source emits single photons at the wavelength of the cesium D1 line at 895 nm which exhibit an inhomogeneously broadened linewidth of 5.1(7) GHz and are subsequently stored in a low-noise ladder-type cesium vapor memory. We show control over the interaction between the single photons and the atomic vapor, allowing for variable retrieval times of up to 19.8(3) ns. A maximum internal efficiency of is achieved. Our results expand the application space of both room-temperature vapor memories and semiconductor QDs in future quantum network architectures.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"668 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ade910","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Interfacing light from solid-state single-photon sources with scalable and robust room-temperature quantum memories has been a long-standing challenge in photonic quantum information technologies due to inherent noise processes and time-scale mismatches between the operating conditions of solid-state and atomic systems. Here, we demonstrate storage of single photons from a semiconductor quantum dot (QD) device in a room-temperature atomic vapor memory and their on-demand retrieval. A deterministically fabricated InGaAs QD light source emits single photons at the wavelength of the cesium D1 line at 895 nm which exhibit an inhomogeneously broadened linewidth of 5.1(7) GHz and are subsequently stored in a low-noise ladder-type cesium vapor memory. We show control over the interaction between the single photons and the atomic vapor, allowing for variable retrieval times of up to 19.8(3) ns. A maximum internal efficiency of is achieved. Our results expand the application space of both room-temperature vapor memories and semiconductor QDs in future quantum network architectures.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.