Ya Fan, Yanting Duan, Jiangqing Chen, Yajie Wang, Kai Shang, Jie Jiang, Lu Su, Chun Zhou, Michel Sadelain, He Huang, Jie Sun
{"title":"Bispecific killer cell engager-secreting CAR-T cells redirect natural killer specificity to enhance antitumour responses","authors":"Ya Fan, Yanting Duan, Jiangqing Chen, Yajie Wang, Kai Shang, Jie Jiang, Lu Su, Chun Zhou, Michel Sadelain, He Huang, Jie Sun","doi":"10.1038/s41551-025-01450-4","DOIUrl":null,"url":null,"abstract":"<p>T cells and natural killer (NK) cells collaborate to maintain immune homeostasis. Current cancer immunotherapies predominantly rely on the individual application of these cells. Here we use bicistronic vectors to co-express chimeric antigen receptors (CARs) and secreted immune cell engagers (ICEs), leveraging the combined therapeutic potential of both effector cell types. After in vitro validation of immune cell engager secretion and function, various combinatorial approaches are systematically compared in mouse models, identifying a highly effective combination of bispecific killer cell engager (BiKE)-secreting CAR-T cells and NK cells. Beyond a simple combination of conventional CAR-T cells and NK cells, this strategy demonstrates superior efficacy in CD19<sup>+</sup> B cell leukaemia and lymphoma and EGFR<sup>+</sup> solid tumour models while reducing the dosage dependence on CAR-T cells. Moreover, CAR-T cells and BiKEs targeting distinct antigens exhibit suppression of tumour cells with heterogeneous antigen expression. These findings indicate that combining BiKE-secreting CAR-T cells and NK cells offers a promising strategy to combat tumour antigen heterogeneity and immune evasion.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"11 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01450-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
T cells and natural killer (NK) cells collaborate to maintain immune homeostasis. Current cancer immunotherapies predominantly rely on the individual application of these cells. Here we use bicistronic vectors to co-express chimeric antigen receptors (CARs) and secreted immune cell engagers (ICEs), leveraging the combined therapeutic potential of both effector cell types. After in vitro validation of immune cell engager secretion and function, various combinatorial approaches are systematically compared in mouse models, identifying a highly effective combination of bispecific killer cell engager (BiKE)-secreting CAR-T cells and NK cells. Beyond a simple combination of conventional CAR-T cells and NK cells, this strategy demonstrates superior efficacy in CD19+ B cell leukaemia and lymphoma and EGFR+ solid tumour models while reducing the dosage dependence on CAR-T cells. Moreover, CAR-T cells and BiKEs targeting distinct antigens exhibit suppression of tumour cells with heterogeneous antigen expression. These findings indicate that combining BiKE-secreting CAR-T cells and NK cells offers a promising strategy to combat tumour antigen heterogeneity and immune evasion.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.