A Quasi Solid-State Hydrogel/InGaN Nanorod Heterostructure-Enabled Amphibious Sensor for Stable and Cross-Medium Optical Sensing and Monitoring

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-13 DOI:10.1021/acsnano.5c07003
Wei Chen, Yang Li, Tianle Zhang, Xin Liu, Zhixiang Gao, Zijian Wang, Yong Yan, Danhao Wang, Shi Fang, Yuying Liu, Yang Kang, Dongyang Luo, Yuanmin Luo, Zihan Zhang, Wengang Gu, Xudong Yang, Weiyi Wang, Wenze Zhang, Yunfei Song, Fang Dong*, Kang Liang, Wei Hu and Haiding Sun*, 
{"title":"A Quasi Solid-State Hydrogel/InGaN Nanorod Heterostructure-Enabled Amphibious Sensor for Stable and Cross-Medium Optical Sensing and Monitoring","authors":"Wei Chen,&nbsp;Yang Li,&nbsp;Tianle Zhang,&nbsp;Xin Liu,&nbsp;Zhixiang Gao,&nbsp;Zijian Wang,&nbsp;Yong Yan,&nbsp;Danhao Wang,&nbsp;Shi Fang,&nbsp;Yuying Liu,&nbsp;Yang Kang,&nbsp;Dongyang Luo,&nbsp;Yuanmin Luo,&nbsp;Zihan Zhang,&nbsp;Wengang Gu,&nbsp;Xudong Yang,&nbsp;Weiyi Wang,&nbsp;Wenze Zhang,&nbsp;Yunfei Song,&nbsp;Fang Dong*,&nbsp;Kang Liang,&nbsp;Wei Hu and Haiding Sun*,&nbsp;","doi":"10.1021/acsnano.5c07003","DOIUrl":null,"url":null,"abstract":"<p >The wearable optoelectronic systems, often employed with miniaturized and portable photosensors, can be conformably integrated with the human body to promote the advancement of health monitoring and protection. However, developing advanced photosensors with a simple structure that can be sustainable with high sensitivity in different operation conditions, e.g., cross-medium amphibious (terrestrial/aquatic environments) photosensing to match the diverse and complex human activities remains limited. Here, we propose a self-powered photoelectrochemical-type photosensor composed of a hydrogel/InGaN nanorod heterostructure to mimic amphibious biophotosensory behavior. Strikingly, the ion-conductive quasi solid-state hydrogel enables the device to execute cross-medium photoresponse, maintaining consistent photoresponsive metrics under both terrestrial and submerged conditions. More importantly, by simply tailoring the bandgap of InGaN nanorods followed by a facile carbon-layer passivation strategy, we achieve high-selectivity harmful wavelength (280–420 nm) detection under sunlight and an impressive ultraviolet responsivity (130.7 mA/W) with fast response speed (&lt;10 ms). A proof-of-concept demonstration of amphibious-type ultraviolet sensing system exhibits a stable operation in waterfront environments, achieving real-time monitoring and analysis of ultraviolet intensity on land and underwater across various weather conditions. This work provides a practical and reliable device platform for the development of multifunctional optoelectronic systems in the pursuit of wearable amphibious-type photosensors for complex environment monitoring.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 28","pages":"26105–26116"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c07003","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The wearable optoelectronic systems, often employed with miniaturized and portable photosensors, can be conformably integrated with the human body to promote the advancement of health monitoring and protection. However, developing advanced photosensors with a simple structure that can be sustainable with high sensitivity in different operation conditions, e.g., cross-medium amphibious (terrestrial/aquatic environments) photosensing to match the diverse and complex human activities remains limited. Here, we propose a self-powered photoelectrochemical-type photosensor composed of a hydrogel/InGaN nanorod heterostructure to mimic amphibious biophotosensory behavior. Strikingly, the ion-conductive quasi solid-state hydrogel enables the device to execute cross-medium photoresponse, maintaining consistent photoresponsive metrics under both terrestrial and submerged conditions. More importantly, by simply tailoring the bandgap of InGaN nanorods followed by a facile carbon-layer passivation strategy, we achieve high-selectivity harmful wavelength (280–420 nm) detection under sunlight and an impressive ultraviolet responsivity (130.7 mA/W) with fast response speed (<10 ms). A proof-of-concept demonstration of amphibious-type ultraviolet sensing system exhibits a stable operation in waterfront environments, achieving real-time monitoring and analysis of ultraviolet intensity on land and underwater across various weather conditions. This work provides a practical and reliable device platform for the development of multifunctional optoelectronic systems in the pursuit of wearable amphibious-type photosensors for complex environment monitoring.

Abstract Image

一种准固态水凝胶/InGaN纳米棒异质结构两栖传感器用于稳定和跨介质光学传感与监测。
可穿戴式光电系统通常采用小型化、便携式的光电传感器,可以与人体整合,促进健康监测和保护的进步。然而,开发结构简单、可在不同操作条件下持续保持高灵敏度的先进光传感器,例如跨介质两栖(陆地/水生环境)光传感,以适应多样化和复杂的人类活动,仍然是有限的。在这里,我们提出了一种由水凝胶/InGaN纳米棒异质结构组成的自供电光电化学型光传感器,以模拟两栖生物光感觉行为。引人注目的是,离子导电准固态水凝胶使设备能够执行跨介质光响应,在陆地和水下条件下保持一致的光响应指标。更重要的是,通过简单地调整InGaN纳米棒的带隙,然后采用简单的碳层钝化策略,我们在阳光下实现了高选择性的有害波长(280-420 nm)检测,并且具有令人惊讶的紫外响应率(130.7 mA/W),响应速度快(<10 ms)。两栖型紫外线传感系统的概念验证演示展示了在海滨环境中稳定运行,实现了各种天气条件下陆地和水下紫外线强度的实时监测和分析。本工作为多功能光电系统的开发提供了一个实用可靠的设备平台,以追求用于复杂环境监测的可穿戴两栖型光传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信