Yifei Liu, Xinmeng Er, Xinyao Wang, Hangxing Ren, Wenchao Wang, Feng Cao, Taiyan Zhang, Pan Liu, Yakun Yuan, Fangbo Yu, Yang Ren, Fuqiang Huang, Wenjiang Ding, Lina Chong
{"title":"Core–Shell IrPt Nanoalloy on La/Ni–Co3O4 for High-Performance Bifunctional PEM Electrolysis with Ultralow Noble Metal Loading","authors":"Yifei Liu, Xinmeng Er, Xinyao Wang, Hangxing Ren, Wenchao Wang, Feng Cao, Taiyan Zhang, Pan Liu, Yakun Yuan, Fangbo Yu, Yang Ren, Fuqiang Huang, Wenjiang Ding, Lina Chong","doi":"10.1007/s40820-025-01845-7","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>Core–shell IrPt nanoalloy on La/Ni–Co₃O₄ achieves unprecedented bifunctional activity (2 A cm<sup>−2</sup> at 1.72 V) in proton exchange membrane water electrolysis (PEMWE) with ultralow loadings (0.075 mg cm<sup>−2</sup> Ir/Pt at both electrodes).</p>\n </li>\n <li>\n <p>646-h durability in PEMWE cell (5 μV h<sup>−1</sup> decay) via IrPt-core@IrPtO<sub>x</sub>-shell synergy, hierarchical pores, and oxygen vacancies for robust electron/mass transfer and active-site stability.</p>\n </li>\n <li>\n <p>In situ X-ray absorption spectroscopy combined with density functional theory unveils Ir–O–Pt sites enabling bi-nuclear oxygen evolution reaction and Volmer–Tafel hydrogen evolution reaction mechanisms through optimized Ir/Pt charge redistribution, breaking kinetic limitations.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01845-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01845-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Highlights
Core–shell IrPt nanoalloy on La/Ni–Co₃O₄ achieves unprecedented bifunctional activity (2 A cm−2 at 1.72 V) in proton exchange membrane water electrolysis (PEMWE) with ultralow loadings (0.075 mg cm−2 Ir/Pt at both electrodes).
646-h durability in PEMWE cell (5 μV h−1 decay) via IrPt-core@IrPtOx-shell synergy, hierarchical pores, and oxygen vacancies for robust electron/mass transfer and active-site stability.
In situ X-ray absorption spectroscopy combined with density functional theory unveils Ir–O–Pt sites enabling bi-nuclear oxygen evolution reaction and Volmer–Tafel hydrogen evolution reaction mechanisms through optimized Ir/Pt charge redistribution, breaking kinetic limitations.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.