Core-Shell IrPt Nanoalloy on La/Ni-Co3O4 for High-Performance Bifunctional PEM Electrolysis with Ultralow Noble Metal Loading.

IF 36.3 1区 材料科学 Q1 Engineering
Yifei Liu,Xinmeng Er,Xinyao Wang,Hangxing Ren,Wenchao Wang,Feng Cao,Taiyan Zhang,Pan Liu,Yakun Yuan,Fangbo Yu,Yang Ren,Fuqiang Huang,Wenjiang Ding,Lina Chong
{"title":"Core-Shell IrPt Nanoalloy on La/Ni-Co3O4 for High-Performance Bifunctional PEM Electrolysis with Ultralow Noble Metal Loading.","authors":"Yifei Liu,Xinmeng Er,Xinyao Wang,Hangxing Ren,Wenchao Wang,Feng Cao,Taiyan Zhang,Pan Liu,Yakun Yuan,Fangbo Yu,Yang Ren,Fuqiang Huang,Wenjiang Ding,Lina Chong","doi":"10.1007/s40820-025-01845-7","DOIUrl":null,"url":null,"abstract":"The development of highly efficient and durable bifunctional catalysts with minimal precious metal usage is critical for advancing proton exchange membrane water electrolysis (PEMWE). We present an iridium-platinum nanoalloy (IrPt) supported on lanthanum and nickel co-doped cobalt oxide, featuring a core-shell architecture with an amorphous IrPtOx shell and an IrPt core. This catalyst exhibits exceptional bifunctional activity for oxygen and hydrogen evolution reactions in acidic media, achieving 2 A cm-2 at 1.72 V in a PEMWE device with ultralow loadings of 0.075 mgIr cm-2 and 0.075 mgPt cm-2 at anode and cathode, respectively. It demonstrates outstanding durability, sustaining water splitting for over 646 h with a degradation rate of only 5 μV h-1, outperforming state-of-the-art Ir-based catalysts. In situ X-ray absorption spectroscopy and density functional theory simulations reveal that the optimized charge redistribution between Ir and Pt, along with the IrPt core-IrPtOx shell structure, enhances performance. The Ir-O-Pt active sites enable a bi-nuclear mechanism for oxygen evolution reaction and a Volmer-Tafel mechanism for hydrogen evolution reaction, reducing kinetic barriers. Hierarchical porosity, abundant oxygen vacancies, and a high electrochemical surface area further improve electron and mass transfer. This work offers a cost-effective solution for green hydrogen production and advances the design of high-performance bifunctional catalysts for PEMWE.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"108 1","pages":"329"},"PeriodicalIF":36.3000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01845-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The development of highly efficient and durable bifunctional catalysts with minimal precious metal usage is critical for advancing proton exchange membrane water electrolysis (PEMWE). We present an iridium-platinum nanoalloy (IrPt) supported on lanthanum and nickel co-doped cobalt oxide, featuring a core-shell architecture with an amorphous IrPtOx shell and an IrPt core. This catalyst exhibits exceptional bifunctional activity for oxygen and hydrogen evolution reactions in acidic media, achieving 2 A cm-2 at 1.72 V in a PEMWE device with ultralow loadings of 0.075 mgIr cm-2 and 0.075 mgPt cm-2 at anode and cathode, respectively. It demonstrates outstanding durability, sustaining water splitting for over 646 h with a degradation rate of only 5 μV h-1, outperforming state-of-the-art Ir-based catalysts. In situ X-ray absorption spectroscopy and density functional theory simulations reveal that the optimized charge redistribution between Ir and Pt, along with the IrPt core-IrPtOx shell structure, enhances performance. The Ir-O-Pt active sites enable a bi-nuclear mechanism for oxygen evolution reaction and a Volmer-Tafel mechanism for hydrogen evolution reaction, reducing kinetic barriers. Hierarchical porosity, abundant oxygen vacancies, and a high electrochemical surface area further improve electron and mass transfer. This work offers a cost-effective solution for green hydrogen production and advances the design of high-performance bifunctional catalysts for PEMWE.
La/Ni-Co3O4核壳IrPt纳米合金用于超低贵金属负载的高性能双功能PEM电解。
开发高效、耐用、贵金属用量少的双功能催化剂是推进质子交换膜水电解(PEMWE)的关键。我们提出了一种由镧和镍共掺杂钴氧化物支撑的铱铂纳米合金(IrPt),具有核壳结构,具有非晶IrPtOx壳和IrPt核。该催化剂在酸性介质中表现出优异的析氧和析氢双功能活性,在阳极和阴极分别为0.075 mgIr cm-2和0.075 mgPt cm-2的超低负载的PEMWE器件中,在1.72 V下分别达到2 A cm-2。它表现出优异的耐久性,持续水分解超过646 h,降解率仅为5 μV h-1,优于最先进的ir基催化剂。原位x射线吸收光谱和密度泛函理论模拟表明,优化的Ir和Pt之间的电荷再分配以及IrPt核- irptox壳结构提高了性能。Ir-O-Pt活性位点实现了析氧反应的双核机制和析氢反应的Volmer-Tafel机制,降低了动力学障碍。分层孔隙、丰富的氧空位和高电化学表面积进一步改善了电子和质量传递。这项工作为绿色制氢提供了一种经济有效的解决方案,并推动了PEMWE高性能双功能催化剂的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信