Tessa Bolognesi, Marco Schiavina, Isabella C. Felli, Roberta Pierattelli
{"title":"NMR insights on multidomain proteins: The case of the SARS-CoV-2 nucleoprotein","authors":"Tessa Bolognesi, Marco Schiavina, Isabella C. Felli, Roberta Pierattelli","doi":"10.1016/j.pnmrs.2025.101577","DOIUrl":null,"url":null,"abstract":"Studying multidomain proteins, especially those combining well-folded domains with intrinsically disordered regions (IDRs), requires specific Nuclear Magnetic Resonance (NMR) techniques to address their structural complexity. To illustrate this, we focus here on the nucleocapsid protein from SARS-CoV 2, which includes both structural and disordered regions. We applied a suite of NMR methods, combining ARTINA software for automatic assignment and structure modelling with multi-receiver experiments that simultaneously capture signals from different nuclear spins, increasing both data quality and acquisition efficiency. Studies of signal temperature-dependence and heteronuclear relaxation and secondary structure propensity (SSP) analysis, as well as experiments employing either 1H or 13C detection to achieve simultaneous snapshots of globular and disordered regions, were used to analyse both the isolated N-terminal domain (NTD) and a construct (NTR) comprising the NTD and two flanking highly disordered regions (IDR1, IDR2). This comprehensive approach allowed us to characterize the NTD's structure and to evaluate how the IDRs affect the overall conformation and dynamics, as well as the interaction with RNA. The findings underscore the importance of applying such a combination of tailored NMR techniques for effectively studying multidomain proteins with heterogeneous structural and dynamic properties.","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"27 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.pnmrs.2025.101577","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Studying multidomain proteins, especially those combining well-folded domains with intrinsically disordered regions (IDRs), requires specific Nuclear Magnetic Resonance (NMR) techniques to address their structural complexity. To illustrate this, we focus here on the nucleocapsid protein from SARS-CoV 2, which includes both structural and disordered regions. We applied a suite of NMR methods, combining ARTINA software for automatic assignment and structure modelling with multi-receiver experiments that simultaneously capture signals from different nuclear spins, increasing both data quality and acquisition efficiency. Studies of signal temperature-dependence and heteronuclear relaxation and secondary structure propensity (SSP) analysis, as well as experiments employing either 1H or 13C detection to achieve simultaneous snapshots of globular and disordered regions, were used to analyse both the isolated N-terminal domain (NTD) and a construct (NTR) comprising the NTD and two flanking highly disordered regions (IDR1, IDR2). This comprehensive approach allowed us to characterize the NTD's structure and to evaluate how the IDRs affect the overall conformation and dynamics, as well as the interaction with RNA. The findings underscore the importance of applying such a combination of tailored NMR techniques for effectively studying multidomain proteins with heterogeneous structural and dynamic properties.
期刊介绍:
Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.