Silicon Nanoparticles Alter Soybean Physiology and Improve Nitrogen Fixation Potential Under Atmospheric Carbon Dioxide (CO2).

IF 4 2区 生物学 Q1 PLANT SCIENCES
Jingbo Tong
{"title":"Silicon Nanoparticles Alter Soybean Physiology and Improve Nitrogen Fixation Potential Under Atmospheric Carbon Dioxide (CO<sub>2</sub>).","authors":"Jingbo Tong","doi":"10.3390/plants14132009","DOIUrl":null,"url":null,"abstract":"<p><p>The interactive effects between nano-silicon dioxide (<i>n</i>-SiO<sub>2</sub>) and elevated CO<sub>2</sub> (eCO<sub>2</sub>; 645 ppm) on soybean physiology, nitrogen fixation, and nutrient dynamics under climate stress remain underexplored. This study elucidates their combined effects under ambient (aCO<sub>2</sub>; 410 ppm) and eCO<sub>2</sub> conditions. eCO<sub>2</sub> + <i>n</i>-SiO<sub>2</sub> synergistically enhanced shoot length (30%), total chlorophyll (112.15%), and photosynthetic rate (103.23%), alongside improved stomatal conductance and intercellular CO<sub>2</sub> (17.19%), optimizing carbon assimilation. Nodulation efficiency increased, with nodule number and biomass rising by 48.3% and 53.6%, respectively, under eCO<sub>2</sub> + <i>n</i>-SiO<sub>2</sub> versus aCO<sub>2</sub>. N-assimilation enzymes (nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase) surged by 38.5-52.1%, enhancing nitrogen metabolism. Concurrently, phytohormones (16-21%) and antioxidant activities (15-22%) increased, reducing oxidative markers (18-22%), and bolstering stress resilience. Nutrient homeostasis improved, with P, K, Mg, Cu, Fe, Zn, and Mn elevating in roots (13-41%) and shoots (13-17%), except shoot Fe and Zn. These findings demonstrate that <i>n</i>-SiO<sub>2</sub> potentiates eCO<sub>2</sub>-driven benefits, amplifying photosynthetic efficiency, nitrogen fixation, and stress adaptation through enhanced biochemical and nutrient regulation. This synergy underscores <i>n</i>-SiO<sub>2</sub> role in optimizing crop performance under future CO<sub>2</sub>-rich climates, advocating nano-fertilizers as sustainable tools for climate-resilient agriculture.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 13","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252044/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14132009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The interactive effects between nano-silicon dioxide (n-SiO2) and elevated CO2 (eCO2; 645 ppm) on soybean physiology, nitrogen fixation, and nutrient dynamics under climate stress remain underexplored. This study elucidates their combined effects under ambient (aCO2; 410 ppm) and eCO2 conditions. eCO2 + n-SiO2 synergistically enhanced shoot length (30%), total chlorophyll (112.15%), and photosynthetic rate (103.23%), alongside improved stomatal conductance and intercellular CO2 (17.19%), optimizing carbon assimilation. Nodulation efficiency increased, with nodule number and biomass rising by 48.3% and 53.6%, respectively, under eCO2 + n-SiO2 versus aCO2. N-assimilation enzymes (nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase) surged by 38.5-52.1%, enhancing nitrogen metabolism. Concurrently, phytohormones (16-21%) and antioxidant activities (15-22%) increased, reducing oxidative markers (18-22%), and bolstering stress resilience. Nutrient homeostasis improved, with P, K, Mg, Cu, Fe, Zn, and Mn elevating in roots (13-41%) and shoots (13-17%), except shoot Fe and Zn. These findings demonstrate that n-SiO2 potentiates eCO2-driven benefits, amplifying photosynthetic efficiency, nitrogen fixation, and stress adaptation through enhanced biochemical and nutrient regulation. This synergy underscores n-SiO2 role in optimizing crop performance under future CO2-rich climates, advocating nano-fertilizers as sustainable tools for climate-resilient agriculture.

二氧化硅纳米颗粒改变大豆生理和提高大气二氧化碳(CO2)下的固氮电位。
纳米二氧化硅(n-SiO2)与高浓度CO2 (eCO2)的交互作用645 ppm)对气候胁迫下大豆生理、固氮和养分动态的影响尚不充分。本研究阐明了它们在环境(aCO2;410 ppm)和eCO2条件。eCO2 + n-SiO2协同提高了茎长(30%)、总叶绿素(112.15%)和光合速率(103.23%),改善了气孔导度和细胞间CO2(17.19%),优化了碳同化。与aCO2处理相比,eCO2 + n-SiO2处理提高了结瘤效率,结瘤数和生物量分别提高了48.3%和53.6%。氮同化酶(硝酸盐还原酶、亚硝酸盐还原酶、谷氨酰胺合成酶、谷氨酸合成酶)增加38.5% ~ 52.1%,促进了氮代谢。同时,植物激素(16-21%)和抗氧化活性(15-22%)增加,氧化标志物降低(18-22%),增强了胁迫恢复能力。除地上部铁和锌外,根系(13-41%)和地上部(13-17%)的磷、钾、镁、铜、铁、锌和锰的营养平衡得到改善。这些发现表明,n-SiO2通过增强生物化学和营养调节,增强了光合效率、固氮和胁迫适应能力,从而增强了co2驱动的效益。这种协同作用强调了n-SiO2在未来富含二氧化碳的气候条件下优化作物性能的作用,倡导纳米肥料作为气候适应型农业的可持续工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plants-Basel
Plants-Basel Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍: Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信