Tao Tong, Fanrong Zeng, Shuzhen Ye, Zhijuan Ji, Yanli Wang, Zhong-Hua Chen, Younan Ouyang
{"title":"Evolutionary and Structural Analysis of the Aquaporin Gene Family in Rice.","authors":"Tao Tong, Fanrong Zeng, Shuzhen Ye, Zhijuan Ji, Yanli Wang, Zhong-Hua Chen, Younan Ouyang","doi":"10.3390/plants14132035","DOIUrl":null,"url":null,"abstract":"<p><p>Aquaporins in rice (<i>Oryza sativa</i> L.) represent a pivotal class of transmembrane channel proteins that mediate the bidirectional transport of water and small solutes, which have critical functions in cellular osmoregulation and ion homeostasis maintenance. Their evolutionary diversity and functional plasticity constitute fundamental mechanisms underlying the adaptive responses to diversified environmental challenges. This review systematically summarizes rice AQPs' evolutionary origins, structural characteristics, and spatiotemporal expression patterns under both physiological and stress conditions, highlighting the high conservation of their key functional domains across evolution and their environment-driven functional diversification. The molecular mechanisms governing AQPs in water utilization, nutrient uptake, and stress responses are unraveled. Furthermore, the potential of precision gene editing and multi-omics integration is discussed to decipher the intricate relationships between AQP evolutionary history, environmental adaptability, and functional specialization, thereby providing a theoretical basis for advancing crop stress resistance and high-quality breeding.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 13","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14132035","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aquaporins in rice (Oryza sativa L.) represent a pivotal class of transmembrane channel proteins that mediate the bidirectional transport of water and small solutes, which have critical functions in cellular osmoregulation and ion homeostasis maintenance. Their evolutionary diversity and functional plasticity constitute fundamental mechanisms underlying the adaptive responses to diversified environmental challenges. This review systematically summarizes rice AQPs' evolutionary origins, structural characteristics, and spatiotemporal expression patterns under both physiological and stress conditions, highlighting the high conservation of their key functional domains across evolution and their environment-driven functional diversification. The molecular mechanisms governing AQPs in water utilization, nutrient uptake, and stress responses are unraveled. Furthermore, the potential of precision gene editing and multi-omics integration is discussed to decipher the intricate relationships between AQP evolutionary history, environmental adaptability, and functional specialization, thereby providing a theoretical basis for advancing crop stress resistance and high-quality breeding.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.