Building basement membranes with computational approaches

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alana Stevenson Harris , Rachel Lennon , Jean-Marc Schwartz
{"title":"Building basement membranes with computational approaches","authors":"Alana Stevenson Harris ,&nbsp;Rachel Lennon ,&nbsp;Jean-Marc Schwartz","doi":"10.1016/j.matbio.2025.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Basement membranes (BMs) are dense extracellular matrix scaffolds that support cells. Their composition, structure and dynamic regulation are vital for tissue health and altered in human disease. The expansion of experimental and analytical techniques has generated large multiomic datasets that include BM components; however, the organising principles of BM component assembly and the regulation of BMs remain poorly understood. There are over 160 curated BM proteins, including core, ubiquitous components such as type IV collagen and laminin isoforms, as well as tissue-restricted components, and there is increasing experimental evidence of BM protein-protein interactions. Here we describe and compare multiomic, protein-protein interaction, and BM curation databases and discuss the application of systems biology approaches including network analysis, Boolean networks and Ordinary Differential Equations to integrate data and model BM organisation. Applying computational modelling strategies to BM datasets may reveal unknown organising principles of BM assembly and regulation and predict mechanisms of dysregulation in BM-associated diseases.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"140 ","pages":"Pages 88-99"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X25000605","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Basement membranes (BMs) are dense extracellular matrix scaffolds that support cells. Their composition, structure and dynamic regulation are vital for tissue health and altered in human disease. The expansion of experimental and analytical techniques has generated large multiomic datasets that include BM components; however, the organising principles of BM component assembly and the regulation of BMs remain poorly understood. There are over 160 curated BM proteins, including core, ubiquitous components such as type IV collagen and laminin isoforms, as well as tissue-restricted components, and there is increasing experimental evidence of BM protein-protein interactions. Here we describe and compare multiomic, protein-protein interaction, and BM curation databases and discuss the application of systems biology approaches including network analysis, Boolean networks and Ordinary Differential Equations to integrate data and model BM organisation. Applying computational modelling strategies to BM datasets may reveal unknown organising principles of BM assembly and regulation and predict mechanisms of dysregulation in BM-associated diseases.
用计算方法构建基底膜。
基底膜(BMs)是致密的细胞外基质支架,支持细胞。它们的组成、结构和动态调节对组织健康和人类疾病的改变至关重要。实验和分析技术的扩展产生了包括BM成分的大型多组数据集;然而,BM组件组装的组织原则和BM的调节仍然知之甚少。目前有超过160种BM蛋白,包括核心成分,普遍存在的成分,如IV型胶原蛋白和层粘连蛋白异构体,以及组织限制性成分,并且越来越多的实验证据表明BM蛋白与蛋白质相互作用。在这里,我们描述和比较多组学、蛋白质-蛋白质相互作用和BM管理数据库,并讨论系统生物学方法的应用,包括网络分析、布尔网络和常微分方程,以整合数据和建模BM组织。将计算建模策略应用于脑基数据集可以揭示脑基组装和调节的未知组织原理,并预测脑基相关疾病的失调机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matrix Biology
Matrix Biology 生物-生化与分子生物学
CiteScore
11.40
自引率
4.30%
发文量
77
审稿时长
45 days
期刊介绍: Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信