{"title":"Construction and Validation of a Digital Twin-Driven Virtual-Reality Fusion Control Platform for Industrial Robots.","authors":"Wenxuan Chang, Wenlei Sun, Pinghui Chen, Huangshuai Xu","doi":"10.3390/s25134153","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional industrial robot programming methods often pose high usage thresholds due to their inherent complexity and lack of standardization. Manufacturers typically employ proprietary programming languages or user interfaces, resulting in steep learning curves and limited interoperability. Moreover, conventional systems generally lack capabilities for remote control and real-time status monitoring. In this study, a novel approach is proposed by integrating digital twin technology with traditional robot control methodologies to establish a virtual-real mapping architecture. A high-precision and efficient digital twin-based control platform for industrial robots is developed using the Unity3D (2022.3.53f1c1) engine, offering enhanced visualization, interaction, and system adaptability. The high-precision twin environment is constructed from the three dimensions of the physical layer, digital layer, and information fusion layer. The system adopts the socket communication mechanism based on TCP/IP protocol to realize the real-time acquisition of robot state information and the synchronous issuance of control commands, and constructs the virtual-real bidirectional mapping mechanism. The Unity3D platform is integrated to develop a visual human-computer interaction interface, and the user-oriented graphical interface and modular command system effectively reduce the threshold of robot use. A spatially curved part welding experiment is carried out to verify the adaptability and control accuracy of the system in complex trajectory tracking and flexible welding tasks, and the experimental results show that the system has high accuracy as well as good interactivity and stability.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134153","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional industrial robot programming methods often pose high usage thresholds due to their inherent complexity and lack of standardization. Manufacturers typically employ proprietary programming languages or user interfaces, resulting in steep learning curves and limited interoperability. Moreover, conventional systems generally lack capabilities for remote control and real-time status monitoring. In this study, a novel approach is proposed by integrating digital twin technology with traditional robot control methodologies to establish a virtual-real mapping architecture. A high-precision and efficient digital twin-based control platform for industrial robots is developed using the Unity3D (2022.3.53f1c1) engine, offering enhanced visualization, interaction, and system adaptability. The high-precision twin environment is constructed from the three dimensions of the physical layer, digital layer, and information fusion layer. The system adopts the socket communication mechanism based on TCP/IP protocol to realize the real-time acquisition of robot state information and the synchronous issuance of control commands, and constructs the virtual-real bidirectional mapping mechanism. The Unity3D platform is integrated to develop a visual human-computer interaction interface, and the user-oriented graphical interface and modular command system effectively reduce the threshold of robot use. A spatially curved part welding experiment is carried out to verify the adaptability and control accuracy of the system in complex trajectory tracking and flexible welding tasks, and the experimental results show that the system has high accuracy as well as good interactivity and stability.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.