{"title":"Borohydride Synthesis of Silver Nanoparticles for SERS Platforms: Indirect Glucose Detection and Analysis Using Gradient Boosting.","authors":"Viktoriia Bakal, Olga Gusliakova, Anastasia Kartashova, Mariia Saveleva, Polina Demina, Ilya Kozhevnikov, Evgenii Ryabov, Daniil Bratashov, Ekaterina Prikhozhdenko","doi":"10.3390/s25134143","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, non-invasive methods for the analysis of biological fluids have attracted growing interest. In this study, we propose a straightforward approach to fabricating silver nanoparticle (AgNP)-coated non-woven polyacrylonitrile substrates for surface-enhanced Raman scattering (SERS). AgNPs were synthesized directly on the substrate using borohydride reduction, ensuring uniform distribution. The optimized SERS substrates exhibited a high enhancement factor (EF) of up to 10<sup>5</sup> for the detection of 4-mercaptobenzoic acid (4-MBA). To enable glucose sensing, the substrates were further functionalized with glucose oxidase (GOx), allowing detection in the 1-10 mM range. Machine learning classification and regression models based on gradient boosting were employed to analyze SERS spectra, enhancing the accuracy of quantitative predictions (R<sup>2</sup> = 0.971, accuracy = 0.938, limit of detection = 0.66 mM). These results highlight the potential of AgNP-modified substrates for reliable and reusable biochemical sensing applications.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134143","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, non-invasive methods for the analysis of biological fluids have attracted growing interest. In this study, we propose a straightforward approach to fabricating silver nanoparticle (AgNP)-coated non-woven polyacrylonitrile substrates for surface-enhanced Raman scattering (SERS). AgNPs were synthesized directly on the substrate using borohydride reduction, ensuring uniform distribution. The optimized SERS substrates exhibited a high enhancement factor (EF) of up to 105 for the detection of 4-mercaptobenzoic acid (4-MBA). To enable glucose sensing, the substrates were further functionalized with glucose oxidase (GOx), allowing detection in the 1-10 mM range. Machine learning classification and regression models based on gradient boosting were employed to analyze SERS spectra, enhancing the accuracy of quantitative predictions (R2 = 0.971, accuracy = 0.938, limit of detection = 0.66 mM). These results highlight the potential of AgNP-modified substrates for reliable and reusable biochemical sensing applications.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.