Umberto Amato, Anestis Antoniadis, Italia De Feis, Anastasiia Doinychko, Irène Gijbels, Antonino La Magna, Daniele Pagano, Francesco Piccinini, Easter Selvan Suviseshamuthu, Carlo Severgnini, Andres Torres, Patrizia Vasquez
{"title":"Detecting Important Features and Predicting Yield from Defects Detected by SEM in Semiconductor Production.","authors":"Umberto Amato, Anestis Antoniadis, Italia De Feis, Anastasiia Doinychko, Irène Gijbels, Antonino La Magna, Daniele Pagano, Francesco Piccinini, Easter Selvan Suviseshamuthu, Carlo Severgnini, Andres Torres, Patrizia Vasquez","doi":"10.3390/s25134218","DOIUrl":null,"url":null,"abstract":"<p><p>A key step to optimize the tests of semiconductors during the production process is to improve the prediction of the final yield from the defects detected on the wafers during the production process. This study investigates the link between the defects detected by a Scanning Electron Microscope (SEM) and the electrical failure of the final semiconductors, with two main objectives: (a) to identify the best layers to inspect by SEM; (b) to develop a model that predicts electrical failures of the semiconductors from the detected defects. The first objective has been reached by a model based on Odds Ratio that gave a (ranked) list of the layers that best predict the final yield. This allows process engineers to concentrate inspections on a few important layers. For the second objective, a regression/classification model based on Gradient Boosting has been developed. As a by-product, this latter model confirmed the results obtained by Odds Ratio analysis. Both models take account of the high lacunarity of the data and have been validated on two distinct datasets from STMicroelectronics.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252516/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134218","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A key step to optimize the tests of semiconductors during the production process is to improve the prediction of the final yield from the defects detected on the wafers during the production process. This study investigates the link between the defects detected by a Scanning Electron Microscope (SEM) and the electrical failure of the final semiconductors, with two main objectives: (a) to identify the best layers to inspect by SEM; (b) to develop a model that predicts electrical failures of the semiconductors from the detected defects. The first objective has been reached by a model based on Odds Ratio that gave a (ranked) list of the layers that best predict the final yield. This allows process engineers to concentrate inspections on a few important layers. For the second objective, a regression/classification model based on Gradient Boosting has been developed. As a by-product, this latter model confirmed the results obtained by Odds Ratio analysis. Both models take account of the high lacunarity of the data and have been validated on two distinct datasets from STMicroelectronics.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.