{"title":"Bilevel Optimization for ISAC Systems with Proactive Eavesdropping Capabilities.","authors":"Tingyue Xue, Wenhao Lu, Mianyi Zhang, Yinghui He, Yunlong Cai, Guanding Yu","doi":"10.3390/s25134238","DOIUrl":null,"url":null,"abstract":"<p><p>Integrated sensing and communication (ISAC) has attracted extensive attention as a key technology to improve spectrum utilization and system performance for future wireless sensor networks. At the same time, active surveillance, as a legitimate means of surveillance, can improve the success rate of surveillance by sending interference signals to suspicious receivers, which is important for crime prevention and public safety. In this paper, we investigate the joint optimization of performance of both ISAC and active surveillance. Specifically, we formulate a bilevel optimization problem where the upper-level objective aims to maximize the probability of successful eavesdropping while the lower-level objective aims to optimize the localization performance of the radar on suspicious transmitters. By employing the Rayleigh quotient, introducing a decoupling strategy, and adding penalty terms, we propose an algorithm to solve the bilevel problem where the lower-level objective is convex. With the help of the proposed algorithm, we obtain the optimal solution of the analog transmit beamforming matrix and the digital beamforming vector. Performance analysis and discussion of key insights, such as the trade-off between eavesdropping success probability and radar localization accuracy, are also provided. Finally, comprehensive simulation results validate the effectiveness of our proposed algorithm in enhancing both the eavesdropping success probability and the accuracy of radar localization.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134238","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated sensing and communication (ISAC) has attracted extensive attention as a key technology to improve spectrum utilization and system performance for future wireless sensor networks. At the same time, active surveillance, as a legitimate means of surveillance, can improve the success rate of surveillance by sending interference signals to suspicious receivers, which is important for crime prevention and public safety. In this paper, we investigate the joint optimization of performance of both ISAC and active surveillance. Specifically, we formulate a bilevel optimization problem where the upper-level objective aims to maximize the probability of successful eavesdropping while the lower-level objective aims to optimize the localization performance of the radar on suspicious transmitters. By employing the Rayleigh quotient, introducing a decoupling strategy, and adding penalty terms, we propose an algorithm to solve the bilevel problem where the lower-level objective is convex. With the help of the proposed algorithm, we obtain the optimal solution of the analog transmit beamforming matrix and the digital beamforming vector. Performance analysis and discussion of key insights, such as the trade-off between eavesdropping success probability and radar localization accuracy, are also provided. Finally, comprehensive simulation results validate the effectiveness of our proposed algorithm in enhancing both the eavesdropping success probability and the accuracy of radar localization.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.