Wonseok Tae, Hao Cheng, Sangyou Kim, Yeongjun Lee, Wonsuk Jung
{"title":"Optimizing Tannin-NaCMC Compositions via DOE for Enhanced Carbon Yield and Strength in 3D-Printed Porous Carbon.","authors":"Wonseok Tae, Hao Cheng, Sangyou Kim, Yeongjun Lee, Wonsuk Jung","doi":"10.3390/polym17131859","DOIUrl":null,"url":null,"abstract":"<p><p>We report the fabrication of lightweight porous carbon structures via UV-assisted photopolymerization molding using a commercial photocurable resin modified with natural tannin and sodium carboxymethyl cellulose (NaCMC) as sustainable additives. A systematic analysis was conducted by applying a Design of Experiments (DOE) approach and regression modeling to evaluate the effects of varying blend compositions on carbon yield and mechanical strength. The results indicate that increasing the tannin content led to a maximum carbon yield of 13.43%, with an average porosity of approximately 80% and a compressive strength around 1 kPa. NaCMC was found to effectively control the resin viscosity within printable limits of 0.2537 Pa·s, although NaCMC indirectly improved carbonization efficiency through normalized yield analysis. This work highlights the synergistic role of bio-based polymers in tuning porous carbon properties. The findings provide a data-driven framework for designing sustainable polymer-derived carbon materials, bridging additive manufacturing with green chemistry.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 13","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17131859","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We report the fabrication of lightweight porous carbon structures via UV-assisted photopolymerization molding using a commercial photocurable resin modified with natural tannin and sodium carboxymethyl cellulose (NaCMC) as sustainable additives. A systematic analysis was conducted by applying a Design of Experiments (DOE) approach and regression modeling to evaluate the effects of varying blend compositions on carbon yield and mechanical strength. The results indicate that increasing the tannin content led to a maximum carbon yield of 13.43%, with an average porosity of approximately 80% and a compressive strength around 1 kPa. NaCMC was found to effectively control the resin viscosity within printable limits of 0.2537 Pa·s, although NaCMC indirectly improved carbonization efficiency through normalized yield analysis. This work highlights the synergistic role of bio-based polymers in tuning porous carbon properties. The findings provide a data-driven framework for designing sustainable polymer-derived carbon materials, bridging additive manufacturing with green chemistry.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.