Effect of Recycling and UV Ageing on the Properties of PLA-Based Materials Used in Additive Manufacturing.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-07-03 DOI:10.3390/polym17131862
Petr Jirků, Miroslav Muller, Rajesh Kumar Mishra, Jaroslava Svobodová
{"title":"Effect of Recycling and UV Ageing on the Properties of PLA-Based Materials Used in Additive Manufacturing.","authors":"Petr Jirků, Miroslav Muller, Rajesh Kumar Mishra, Jaroslava Svobodová","doi":"10.3390/polym17131862","DOIUrl":null,"url":null,"abstract":"<p><p>This article focuses on the possibility of using biodegradable polymer-composite materials in additive manufacturing via fused deposition modelling (FDM) 3D printing. The main objective was to experimentally verify the technical feasibility of the repeated use of recycled PLA and PLA composites containing 10% natural coffee-ground (CG) filler in a print-degradation-recycling-print cycle. Special attention was paid to simulated ultraviolet radiation as a degradation factor affecting the materials' mechanical properties. Pure PLA and PLA_CG were compared at four levels of degradation time and after subsequent recycling. The results show that the inclusion of coffee-ground filler slightly reduces the initial strength but enhances the 3D-printed material's resistance to UV degradation and thus extends its functional service life. Unlike pure PLA, which loses its processability after 12 weeks, PLA_CG retains structural integrity and mechanical functionality. The research confirms the potential of recycled PLA composites with natural fillers for sustainable manufacturing and supports their use within a circular economy framework.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 13","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251796/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17131862","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on the possibility of using biodegradable polymer-composite materials in additive manufacturing via fused deposition modelling (FDM) 3D printing. The main objective was to experimentally verify the technical feasibility of the repeated use of recycled PLA and PLA composites containing 10% natural coffee-ground (CG) filler in a print-degradation-recycling-print cycle. Special attention was paid to simulated ultraviolet radiation as a degradation factor affecting the materials' mechanical properties. Pure PLA and PLA_CG were compared at four levels of degradation time and after subsequent recycling. The results show that the inclusion of coffee-ground filler slightly reduces the initial strength but enhances the 3D-printed material's resistance to UV degradation and thus extends its functional service life. Unlike pure PLA, which loses its processability after 12 weeks, PLA_CG retains structural integrity and mechanical functionality. The research confirms the potential of recycled PLA composites with natural fillers for sustainable manufacturing and supports their use within a circular economy framework.

回收和UV老化对增材制造用pla基材料性能的影响。
本文重点介绍了通过熔融沉积建模(FDM) 3D打印在增材制造中使用可生物降解聚合物复合材料的可能性。主要目的是通过实验验证在打印-降解-回收-打印循环中重复使用含有10%天然咖啡粉(CG)填料的再生PLA和PLA复合材料的技术可行性。特别注意了模拟紫外线辐射作为影响材料力学性能的降解因素。对纯PLA和PLA_CG在降解时间和回收后的四个水平进行了比较。结果表明,咖啡渣填料的加入略微降低了3d打印材料的初始强度,但增强了3d打印材料的抗紫外线降解能力,从而延长了其功能使用寿命。与纯PLA不同,PLA在12周后就会失去加工性能,而PLA_CG保留了结构完整性和机械功能。该研究证实了含有天然填料的再生PLA复合材料在可持续制造方面的潜力,并支持其在循环经济框架内的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信